2021-2022学年北京市北师大附中中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.下列计算正确的是( )
A.(a)=a B.a+a=a
C.(3a)•(2a)=6a D.3a﹣a=3
2.若代数式的值为零,则实数x的值为( )
A.x=0 B.x≠0 C.x=3 D.x≠3
3.下列说法中,正确的是( )
A.长度相等的弧是等弧
B.平分弦的直径垂直于弦,并且平分弦所对的两条弧
C.经过半径并且垂直于这条半径的直线是圆的切线
D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径
4.如图,AB是的直径,点C,D在上,若,则的度数为
A. B. C. D.
5.一元二次方程(x+3)(x-7)=0的两个根是
A.x1=3,x2=-7 B.x1=3,x2=7
C.x1=-3,x2=7 D.x1=-3,x2=-7
6.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是( )
A. B. C. D.
7.如图1,在等边△ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为( )
A.4 B. C.12 D.
8.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
A.平均数 B.中位数 C.众数 D.方差
9.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②-1≤a≤-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为( )
A.1个 B.2个 C.3个 D.4个
10.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )
A.56×108 B.5.6×108 C.5.6×109 D.0.56×1010
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为_____.
12.化简÷=_____.
13.规定:,如:,若,则=__.
14.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=( )
A.﹣1 B.4 C.﹣4 D.1
15.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.
16.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1. 则cos∠BEC=________.
三、解答题(共8题,共72分)
17.(8分)如图,是菱形的对角线,,(1)请用尺规作图法,作的垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)在(1)条件下,连接,求的度数.
18.(8分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
求证:DE是⊙O的切线;若DE=6cm,AE=3cm,求⊙O的半径.
19.(8分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.
(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.
①求证:△OCP∽△PDA;
②若△OCP与△PDA的面积比为1:4,求边AB的长.
(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.
20.(8分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)
(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)
(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?
21.(8分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:
(1)本次被调查的学生的人数为 ;
(2)补全条形统计图
(3)扇形统计图中,类所在扇形的圆心角的度数为 ;
(4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多少名.
22.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
23.(12分)阅读下列材料,解答下列问题:
材料1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式.如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程.
公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:
x2+2ax﹣3a2
=x2+2ax+a2﹣a2﹣3a2
=(x+a)2﹣(2a)2
=(x+3a)(x﹣a)
材料2.因式分解:(x+y)2+2(x+y)+1
解:将“x+y”看成一个整体,令x+y=A,则
原式=A2+2A+1=(A+1)2
再将“A”还原,得:原式=(x+y+1)2.
上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:
(1)根据材料1,把c2﹣6c+8分解因式;
(2)结合材料1和材料2完成下面小题:
①分解因式:(a﹣b)2+2(a﹣b)+1;
②分解因式:(m+n)(m+n﹣4)+3.
24.新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”
(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD= ;
②若∠BAC=90°(如图3),BC=6,AD= ;
(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;
(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
【详解】
A.(a2)3=a2×3=a6,故本选项正确;
B.a2+a2=2a2,故本选项错误;
C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;
D.3a﹣a=2a,故本选项错误.
故选A.
【点睛】
本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.
2、A
【解析】
根据分子为零,且分母不为零解答即可.
【详解】
解:∵代数式的值为零,
∴x=0,
此时分母x-3≠0,符合题意.
故选A.
【点睛】
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
3、D
【解析】
根据切线的判定,圆的知识,可得答案.
【详解】
解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;
B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;
C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;
D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;
故选:D.
【点睛】
本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.
4、B
【解析】
试题解析:连接AC,如图,
∵AB为直径,
∴∠ACB=90°,
∴
∴
故选B.
点睛:在同圆或等圆中,同弧或等弧所对的圆周角相等.
5、C
【解析】
根据因式分解法直接求解即可得.
【详解】
∵(x+3)(x﹣7)=0,
∴x+3=0或x﹣7=0,
∴x1=﹣3,x2=7,
故选C.
【点睛】
本题考查了解一元二次方程——因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.
6、B
【解析】
【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.
【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,
故选B.
【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.
7、D
【解析】
分析:
由图1、图2结合题意可知,当DP⊥AB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PD⊥AB于点P,连接AD,结合△ABC是等边三角形和点D是BC边的中点进行分析解答即可.
详解:
由题意可知:当DP⊥AB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PD⊥AB于点P,连接AD,
∵△ABC是等边三角形,点D是BC边上的中点,
∴∠ABC=60°,AD⊥BC,
∵DP⊥AB于点P,此时DP=,
∴BD=,
∴BC=2BD=4,
∴AB=4,
∴AD=AB·sin∠B=4×sin60°=,
∴S△ABC=AD·BC=.
故选D.
点睛:“读懂题意,知道当DP⊥AB于点P时,DP最短=”是解答本题的关键.
8、B
【解析】
总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
【详解】
要想知道自己是否入选,老师只需公布第五名的成绩,
即中位数.
故选B.
9、D
【解析】
利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.
【详解】
∵抛物线开口向下,
∴a<0,
而抛物线的对称轴为直线x=-=1,即b=-2a,
∴3a+b=3a-2a=a<0,所以①正确;
∵2≤c≤3,
而c=-3a,
∴2≤-3a≤3,
∴-1≤a≤-,所以②正确;
∵抛物线的顶点坐标(1,n),
∴x=1时,二次函数值有最大值n,
∴a+b+c≥am2+bm+c,
即a+b≥am2+bm,所以③正确;
∵抛物线的顶点坐标(1,n),
∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.
故选D.
【点睛】
本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
10、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.
【详解】
56亿=56×108=5.6×101,
故选C.
【点睛】
此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、10πcm1.
【解析】
根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=71°,于是得到结论.
【详解】
解:∵AC与BD是⊙O的两条直径,
∴∠ABC=∠ADC=∠DAB=∠BCD=90°,
∴四边形ABCD是矩形,
∴S△ABO=S△CDO =S△AOD=S△BOD,
∴图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,
∵OA=OB,
∴∠BAC=∠ABO=36°,
∴∠AOD=71°,
∴图中阴影部分的面积=1×=10π,
故答案为10πcm1.
点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键.
12、x+1
【解析】
分析:根据根式的除法,先因式分解后,把除法化为乘法,再约分即可.
详解:解:原式=÷
=•(x+1)(x﹣1)
=x+1,
故答案为x+1.
点睛:此题主要考查了分式的运算,关键是要把除法问题转化为乘法运算即可,注意分子分母的因式分解.
13、1或-1
【解析】
根据a⊗b=(a+b)b,列出关于x的方程(2+x)x=1,解方程即可.
【详解】
依题意得:(2+x)x=1,
整理,得 x2+2x=1,
所以 (x+1)2=4,
所以x+1=±2,
所以x=1或x=-1.
故答案是:1或-1.
【点睛】
用配方法解一元二次方程的步骤:
①把原方程化为ax2+bx+c=0(a≠0)的形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.
14、1
【解析】
据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b
即可.
【详解】
∵点A(a,3)与点B(﹣4,b)关于原点对称,
∴a=4,b=﹣3,
∴a+b=1,
故选D.
【点睛】
考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.
15、61
【解析】
分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.
详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;
如图②:AM2=AC2+CM2=92+4=85;
如图:AM2=52+(4+2)2=61.
∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.
故答案为:61.
点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.
16、
【解析】
分析:连接BC,则∠BCE=90°,由余弦的定义求解.
详解:连接BC,根据圆周角定理得,∠BCE=90°,
所以cos∠BEC=.
故答案为.
点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.
三、解答题(共8题,共72分)
17、(1)答案见解析;(2)45°.
【解析】
(1)分别以A、B为圆心,大于长为半径画弧,过两弧的交点作直线即可;
(2)根据∠DBF=∠ABD﹣∠ABF计算即可;
【详解】
(1)如图所示,直线EF即为所求;
(2)∵四边形ABCD是菱形,
∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,
∴∠ABC=150°,∠ABC+∠C=180°,
∴∠C=∠A=30°.
∵EF垂直平分线段AB,
∴AF=FB,
∴∠A=∠FBA=30°,
∴∠DBF=∠ABD﹣∠FBE=45°.
【点睛】
本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.
18、解:(1)证明见解析;
(2)⊙O的半径是7.5cm.
【解析】
(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.
(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.
【详解】
(1)证明:连接OD.
∵OA=OD,
∴∠OAD=∠ODA.
∵∠OAD=∠DAE,
∴∠ODA=∠DAE.
∴DO∥MN.
∵DE⊥MN,
∴∠ODE=∠DEM=90°.
即OD⊥DE.
∵D在⊙O上,OD为⊙O的半径,
∴DE是⊙O的切线.
(2)解:∵∠AED=90°,DE=6,AE=3,
∴.
连接CD.
∵AC是⊙O的直径,
∴∠ADC=∠AED=90°.
∵∠CAD=∠DAE,
∴△ACD∽△ADE.
∴.
∴.
则AC=15(cm).
∴⊙O的半径是7.5cm.
考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.
19、(1)①证明见解析;②10;(2)线段EF的长度不变,它的长度为2.
.
【解析】
试题分析:(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长;
(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB的长,最后代入EF=PB即可得出线段EF的长度不变.
试题解析:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴=,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得 :,解得:x=5,∴CD=AB=AP=2OP=10,∴边CD的长为10;
(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB==,∴EF=PB=,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为.
考点:翻折变换(折叠问题);矩形的性质;相似形综合题.
20、(1)y=x1.z=﹣x+30(0≤x≤100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元
【解析】
(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;
(1)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;
(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.
【详解】
(1)图①可得函数经过点(100,1000),
设抛物线的解析式为y=ax1(a≠0),
将点(100,1000)代入得:1000=10000a,
解得:a=,
故y与x之间的关系式为y=x1.
图②可得:函数经过点(0,30)、(100,10),
设z=kx+b,则,
解得: ,
故z与x之间的关系式为z=﹣x+30(0≤x≤100);
(1)W=zx﹣y=﹣x1+30x﹣x1
=﹣x1+30x
=﹣(x1﹣150x)
=﹣(x﹣75)1+1115,
∵﹣<0,
∴当x=75时,W有最大值1115,
∴年产量为75万件时毛利润最大,最大毛利润为1115万元;
(3)令y=360,得x1=360,
解得:x=±60(负值舍去),
由图象可知,当0<y≤360时,0<x≤60,
由W=﹣(x﹣75)1+1115的性质可知,
当0<x≤60时,W随x的增大而增大,
故当x=60时,W有最大值1080,
答:今年最多可获得毛利润1080万元.
【点睛】
本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.
21、 (1)300;(2)见解析;(3)108°;(4)约有840名.
【解析】
(1)根据A种类人数及其占总人数百分比可得答案;
(2)用总人数乘以B的百分比得出其人数,即可补全条形图;
(3)用360°乘以C类人数占总人数的比例可得;
(4)总人数乘以C、D两类人数占样本的比例可得答案.
【详解】
解:(1)本次被调查的学生的人数为69÷23%=300(人),
故答案为:300;
(2)喜欢B类校本课程的人数为300×20%=60(人),
补全条形图如下:
(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×=108°,
故答案为:108°;
(4)∵2000×=840,
∴估计该校喜爱C,D两类校本课程的学生共有840名.
【点睛】
本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.
22、 (1) ;(2).
【解析】
(1)直接利用概率公式求解;
(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
【详解】
(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
(2)画树状图为:
共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.
23、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).
【解析】
(1)根据材料1,可以对c2-6c+8分解因式;
(2)①根据材料2的整体思想可以对(a-b)2+2(a-b)+1分解因式;
②根据材料1和材料2可以对(m+n)(m+n-4)+3分解因式.
【详解】
(1)c2-6c+8
=c2-6c+32-32+8
=(c-3)2-1
=(c-3+1)(c-3+1)
=(c-4)(c-2);
(2)①(a-b)2+2(a-b)+1
设a-b=t,
则原式=t2+2t+1=(t+1)2,
则(a-b)2+2(a-b)+1=(a-b+1)2;
②(m+n)(m+n-4)+3
设m+n=t,
则t(t-4)+3
=t2-4t+3
=t2-4t+22-22+3
=(t-2)2-1
=(t-2+1)(t-2-1)
=(t-1)(t-3),
则(m+n)(m+n-4)+3=(m+n-1)(m+n-3).
【点睛】
本题考查因式分解的应用,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行因式分解.
24、(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;
【解析】
(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;
②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.
【详解】
(1)①∵△ABC是等边三角形,BC=1,
∴AB=AC=1,∠BAC=60,
∴AB′=AC′=1,∠B′AC′=120°.
∵AD为等腰△AB′C′的中线,
∴AD⊥B′C′,∠C′=30°,
∴∠ADC′=90°.
在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,
∴AD=AC′=2.
②∵∠BAC=90°,
∴∠B′AC′=90°.
在△ABC和△AB′C′中,,
∴△ABC≌△AB′C′(SAS),
∴B′C′=BC=6,
∴AD=B′C′=3.
故答案为:①2;②3.
(2)AD=BC.
证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.
∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,
∴∠BAC=∠AB′E.
在△BAC和△AB′E中,,
∴△BAC≌△AB′E(SAS),
∴BC=AE.
∵AD=AE,
∴AD=BC.
(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P作PF⊥BC于点F.
∵PB=PC,PF⊥BC,
∴PF为△PBC的中位线,
∴PF=AD=3.
在Rt△BPF中,∠BFP=90°,PB=5,PF=3,
∴BF==1,
∴BC=2BF=4.
【点睛】
本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.
2022年北京市中考数学押题卷含解析: 这是一份2022年北京市中考数学押题卷含解析,共23页。
2021-2022学年北京市大兴区中考押题数学预测卷含解析: 这是一份2021-2022学年北京市大兴区中考押题数学预测卷含解析,共23页。试卷主要包含了图中三视图对应的正三棱柱是等内容,欢迎下载使用。
2021-2022学年北京市第四中学中考数学押题卷含解析: 这是一份2021-2022学年北京市第四中学中考数学押题卷含解析,共18页。试卷主要包含了反比例函数是y=的图象在,在直角坐标系中,已知点P,计算 的结果为等内容,欢迎下载使用。