|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年北京市中学关村中学中考猜题数学试卷含解析
    立即下载
    加入资料篮
    2021-2022学年北京市中学关村中学中考猜题数学试卷含解析01
    2021-2022学年北京市中学关村中学中考猜题数学试卷含解析02
    2021-2022学年北京市中学关村中学中考猜题数学试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年北京市中学关村中学中考猜题数学试卷含解析

    展开
    这是一份2021-2022学年北京市中学关村中学中考猜题数学试卷含解析,共22页。试卷主要包含了下列四个实数中,比5小的是,若点P等内容,欢迎下载使用。

    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(共10小题,每小题3分,共30分)
    1.如图1,点P从△ABC的顶点A出发,沿A﹣B﹣C匀速运动,到点C停止运动.点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC的面积是( )
    A.10B.12C.20D.24
    2.在同一平面直角坐标系中,函数y=x+k与(k为常数,k≠0)的图象大致是( )
    A.B.
    C.D.
    3.下列等式正确的是( )
    A.(a+b)2=a2+b2B.3n+3n+3n=3n+1
    C.a3+a3=a6D.(ab)2=a
    4.下列各数中,相反数等于本身的数是( )
    A.–1B.0C.1D.2
    5.下列四个实数中,比5小的是( )
    A.B.C.D.
    6.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为 ( )
    A.120°B.110°C.100°D.80°
    7.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则ba的值是( )
    A.B.-C.4D.-1
    8.如图,点从矩形的顶点出发,沿以的速度匀速运动到点,图是点运动时,的面积随运动时间变化而变化的函数关系图象,则矩形的面积为( )

    A.B.C.D.
    9.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是( )
    A.B.C.D.
    10.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为( )
    A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知二次函数的图象如图所示,有下列结论:,,;,,其中正确的结论序号是______
    12.关于x的分式方程=2的解为正实数,则实数a的取值范围为_____.
    13.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.
    14.计算(5ab3)2的结果等于_____.
    15.如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是__________.
    16.若正n边形的内角为,则边数n为_____________.
    三、解答题(共8题,共72分)
    17.(8分)如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.
    (1)求二次函数的表达式;
    (2)当﹣<x<1时,请求出y的取值范围;
    (3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.
    18.(8分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
    (1)求线段AQ的长;(用含t的代数式表示)
    (2)当点P在AB边上运动时,求PQ与△ABC的一边垂直时t的值;
    (3)设△APQ的面积为S,求S与t的函数关系式;
    (4)当△APQ是以PQ为腰的等腰三角形时,直接写出t的值.
    19.(8分)先化简,再求值÷(x﹣),其中x=.
    20.(8分)如图,在方格纸中.
    (1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;
    (2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;
    (3)计算的面积.
    21.(8分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.
    (1)求证:四边形ABCD是菱形;
    (2)若∠EAF=60°,CF=2,求AF的长.
    22.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
    23.(12分)如图1,的余切值为2,,点D是线段上的一动点(点D不与点A、B重合),以点D为顶点的正方形的另两个顶点E、F都在射线上,且点F在点E的右侧,联结,并延长,交射线于点P.
    (1)点D在运动时,下列的线段和角中,________是始终保持不变的量(填序号);
    ①;②;③;④;⑤;⑥;
    (2)设正方形的边长为x,线段的长为y,求y与x之间的函数关系式,并写出定义域;
    (3)如果与相似,但面积不相等,求此时正方形的边长.
    24.某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售.
    (1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;
    (2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值.
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    过点A作AM⊥BC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,
    观察图象可知AB=AC=5,
    ∴BM==3,∴BC=2BM=6,
    ∴S△ABC==12,
    故选B.
    【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.
    2、B
    【解析】
    选项A中,由一次函数y=x+k的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.
    故选B.
    3、B
    【解析】
    (1)根据完全平方公式进行解答;
    (2)根据合并同类项进行解答;
    (3)根据合并同类项进行解答;
    (4)根据幂的乘方进行解答.
    【详解】
    解:A、(a+b)2=a2+2ab+b2,故此选项错误;
    B、3n+3n+3n=3n+1,正确;
    C、a3+a3=2a3,故此选项错误;
    D、(ab)2=a2b,故此选项错误;
    故选B.
    【点睛】
    本题考查整数指数幂和整式的运算,解题关键是掌握各自性质.
    4、B
    【解析】
    根据相反数的意义,只有符号不同的数为相反数.
    【详解】
    解:相反数等于本身的数是1.
    故选B.
    【点睛】
    本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,1的相反数是1.
    5、A
    【解析】
    首先确定无理数的取值范围,然后再确定是实数的大小,进而可得答案.
    【详解】
    解:A、∵5<<6,
    ∴5﹣1<﹣1<6﹣1,
    ∴﹣1<5,故此选项正确;
    B、∵
    ∴,故此选项错误;
    C、∵6<<7,
    ∴5<﹣1<6,故此选项错误;
    D、∵4<<5,
    ∴,故此选项错误;
    故选A.
    【点睛】
    考查无理数的估算,掌握无理数估算的方法是解题的关键.通常使用夹逼法.
    6、D
    【解析】
    先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.
    【详解】
    ∵∠DCF=100°,
    ∴∠DCE=80°,
    ∵AB∥CD,
    ∴∠AEF=∠DCE=80°.
    故选D.
    【点睛】
    本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
    7、A
    【解析】
    根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.
    【详解】
    解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,
    ∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,
    解得a=2,b=,
    ∴ba=()2=.
    故选A.
    8、C
    【解析】
    由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.
    【详解】
    由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,
    ∴矩形的面积为4×8=32,
    故选:C.
    【点睛】
    本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.
    9、D
    【解析】
    【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.
    【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,
    ∵∠ACB=90°,即∠BCD+∠ACD=90°,
    ∴∠ACD=∠B=α,
    A、在Rt△BCD中,sinα=,故A正确,不符合题意;
    B、在Rt△ABC中,sinα=,故B正确,不符合题意;
    C、在Rt△ACD中,sinα=,故C正确,不符合题意;
    D、在Rt△ACD中,csα=,故D错误,符合题意,
    故选D.
    【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
    10、A
    【解析】
    分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可.
    【详解】
    ∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,
    ∴y1=﹣k2×(-3)=3k2,
    y2=﹣k2×(-1)=k2,
    ∵k≠0,
    ∴y1>y2.
    故答案选A.
    【点睛】
    本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    由图象可知:抛物线开口方向向下,则,
    对称轴直线位于y轴右侧,则a、b异号,即,
    抛物线与y轴交于正半轴,则,,故正确;
    对称轴为,,故正确;
    由抛物线的对称性知,抛物线与x轴的另一个交点坐标为,
    所以当时,,即,故正确;
    抛物线与x轴有两个不同的交点,则,所以,故错误;
    当时,,故正确.
    故答案为.
    【点睛】
    本题考查了考查了图象与二次函数系数之间的关系,二次函数系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
    12、a<2且a≠1
    【解析】
    将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.
    【详解】
    分式方程去分母得:x+a-2a=2(x-1),
    解得:x=2-a,
    ∵分式方程的解为正实数,
    ∴2-a>0,且2-a≠1,
    解得:a<2且a≠1.
    故答案为:a<2且a≠1.
    【点睛】
    分式方程的解.
    13、2
    【解析】
    试题分析:当x+3≥﹣x+1,
    即:x≥﹣1时,y=x+3,
    ∴当x=﹣1时,ymin=2,
    当x+3<﹣x+1,
    即:x<﹣1时,y=﹣x+1,
    ∵x<﹣1,
    ∴﹣x>1,
    ∴﹣x+1>2,
    ∴y>2,
    ∴ymin=2,
    14、25a2b1.
    【解析】
    代数式内每项因式均平方即可.
    【详解】
    解:原式=25a2b1.
    【点睛】
    本题考查了代数式的乘方.
    15、1.
    【解析】
    如图,作BH⊥AC于H.由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由题意:21a×4a=40,求出a即可解决问题.
    【详解】
    如图,作BH⊥AC于H.
    ∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.
    ∵tan∠BOH,∴BH=4a,OH=3a,由题意:21a×4a=40,∴a=1,∴AC=1.
    故答案为:1.
    【点睛】
    本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.
    16、9
    【解析】
    分析:
    根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可.
    详解:
    由题意可得:140n=180(n-2),
    解得:n=9.
    故答案为:9.
    点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).
    三、解答题(共8题,共72分)
    17、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).
    【解析】
    (1)利用对称轴公式求出m的值,即可确定出解析式;
    (1)根据x的范围,利用二次函数的增减性确定出y的范围即可;
    (3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可.
    【详解】
    (1)∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,即m=﹣1,则二次函数解析式为y=﹣x1﹣1x+6;
    (1)当x=﹣时,y=;当x=1时,y=.
    ∵﹣<x<1位于对称轴右侧,y随x的增大而减小,∴<y<;
    (3)当x=﹣1时,y=8,∴顶点D的坐标是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.
    ∵点A在点B的左侧,∴点A坐标为(﹣6,0).
    设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11.
    设E(0,n),则有E′(﹣4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4).
    【点睛】
    本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.
    18、(1)4﹣t;(2)当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或.
    【解析】
    分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;
    (2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQ⊥BC;当PQ⊥AB时;当PQ⊥AC时;分别求解即可;
    (3)当P在AB边上时,即0≤t≤1,作PG⊥AC于G,或当P在边BC上时,即1<t≤3,分别根据三角形的面积求函数的解析式即可;
    (4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:①当P在边AB上时,作PG⊥AC于G,则AG=GQ,列方程求解;②当P在边AC上时, AQ=PQ,根据勾股定理求解.
    详解:(1)如图1,
    Rt△ABC中,∠A=30°,AB=8,
    ∴BC=AB=4,
    ∴AC=,
    由题意得:CQ=t,
    ∴AQ=4﹣t;
    (2)当点P在AB边上运动时,PQ与△ABC的一边垂直,有三种情况:
    ①当Q在C处,P在A处时,PQ⊥BC,此时t=0;
    ②当PQ⊥AB时,如图2,
    ∵AQ=4﹣t,AP=8t,∠A=30°,
    ∴cs30°=,
    ∴,
    t=;
    ③当PQ⊥AC时,如图3,
    ∵AQ=4﹣t,AP=8t,∠A=30°,
    ∴cs30°=,

    t=;
    综上所述,当点P在AB边上运动时,PQ与△ABC的一边垂直时t的值是t=0或或;
    (3)分两种情况:
    ①当P在AB边上时,即0≤t≤1,如图4,作PG⊥AC于G,
    ∵∠A=30°,AP=8t,∠AGP=90°,
    ∴PG=4t,
    ∴S△APQ=AQ•PG=(4﹣t)•4t=﹣2t2+8t;
    ②当P在边BC上时,即1<t≤3,如图5,
    由题意得:PB=2(t﹣1),
    ∴PC=4﹣2(t﹣1)=﹣2t+6,
    ∴S△APQ=AQ•PC=(4﹣t)(﹣2t+6)=t2;
    综上所述,S与t的函数关系式为:S=;
    (4)当△APQ是以PQ为腰的等腰三角形时,有两种情况:
    ①当P在边AB上时,如图6,
    AP=PQ,作PG⊥AC于G,则AG=GQ,
    ∵∠A=30°,AP=8t,∠AGP=90°,
    ∴PG=4t,
    ∴AG=4t,
    由AQ=2AG得:4﹣t=8t,t=,
    ②当P在边AC上时,如图7,AQ=PQ,
    Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,
    ∴,
    t=或﹣(舍),
    综上所述,t的值为或.
    点睛:此题主要考查了三角形中的动点问题,用到勾股定理,等腰三角形的性质,直角三角形的性质,二次函数等知识,是一道比较困难的综合题,关键是合理添加辅助线,构造合适的方程求解.
    19、6
    【解析】
    【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.
    【详解】原式=
    =
    =,
    当x=,原式==6.
    【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.
    20、(1)作图见解析;.(2)作图见解析;(3)1.
    【解析】
    分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;
    (2)利用位似图形的性质即可得出△A'B'C';
    (3)直接利用(2)中图形求出三角形面积即可.
    详解:(1)如图所示,即为所求的直角坐标系;B(2,1);
    (2)如图:△A'B'C'即为所求;
    (3)S△A'B'C'=×4×8=1.
    点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.
    21、 (1)见解析;(2)2
    【解析】
    (1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可;
    方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;
    (2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.
    【详解】
    (1)证法一:连接AC,如图.
    ∵AE⊥BC,AF⊥DC,AE=AF,
    ∴∠ACF=∠ACE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴∠DAC=∠ACB.
    ∴∠DAC=∠DCA,
    ∴DA=DC,
    ∴四边形ABCD是菱形.
    证法二:如图,
    ∵四边形ABCD是平行四边形,
    ∴∠B=∠D.
    ∵AE⊥BC,AF⊥DC,
    ∴∠AEB=∠AFD=90°,
    又∵AE=AF,
    ∴△AEB≌△AFD.
    ∴AB=AD,
    ∴四边形ABCD是菱形.
    (2)连接AC,如图.
    ∵AE⊥BC,AF⊥DC,∠EAF=60°,
    ∴∠ECF=120°,
    ∵四边形ABCD是菱形,
    ∴∠ACF=60°,
    在Rt△CFA中,AF=CF•tan∠ACF=2.
    【点睛】
    本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。
    22、(1)15人;(2)补图见解析.(3).
    【解析】
    (1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;
    (2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;
    (3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.
    【详解】
    解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;
    (2)A2的人数为15﹣2﹣6﹣4=3(人)
    补全图形,如图所示,
    A1所在圆心角度数为:×360°=48°;
    (3)画出树状图如下:
    共6种等可能结果,符合题意的有3种
    ∴选出一名男生一名女生的概率为:P=.
    【点睛】
    本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.
    23、(1)④⑤;(2);(3)或.
    【解析】
    (1)作于M,交于N,如图,利用三角函数的定义得到,设,则,利用勾股定理得,解得,即,,设正方形的边长为x,则,,由于,则可判断为定值;再利用得到,则可判断为定值;在中,利用勾股定理和三角函数可判断在变化,在变化,在变化;
    (2)易得四边形为矩形,则,证明,利用相似比可得到y与x的关系式;
    (3)由于,与相似,且面积不相等,利用相似比得到,讨论:当点P在点F点右侧时,则,所以,当点P在点F点左侧时,则,所以,然后分别解方程即可得到正方形的边长.
    【详解】
    (1)如图,作于M,交于N,
    在中,∵,
    设,则,
    ∵,
    ∴,解得,
    ∴,,
    设正方形的边长为x,
    在中,∵,
    ∴,
    ∴,
    在中,,
    ∴为定值;
    ∵,
    ∴,
    ∴为定值;
    在中,,
    而在变化,
    ∴在变化,在变化,
    ∴在变化,
    所以和是始终保持不变的量;
    故答案为:④⑤
    (2)∵MN⊥AP,DEFG是正方形,
    ∴四边形为矩形,
    ∴,
    ∵,
    ∴,
    ∴,
    即,

    (3)∵,与相似,且面积不相等,
    ∴,即,
    ∴,
    当点P在点F点右侧时,AP=AF+PF==,
    ∴,
    解得,
    当点P在点F点左侧时,,
    ∴,
    解得,
    综上所述,正方形的边长为或.
    【点睛】
    本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质.
    24、(1)y=﹣50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
    【解析】
    (1)根据题意可以得到y关于x的函数解析式,本题得以解决;
    (2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决.
    【详解】
    (1)由题意可得,
    y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,
    即y与x的函数关系式为y=﹣50x+10500;
    (2)由题意可得,,得x,
    ∵x是整数,y=﹣50x+10500,
    ∴当x=12时,y取得最大值,此时,y=﹣50×12+10500=9900,30﹣x=18,
    答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元.
    【点睛】
    本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.
    相关试卷

    2021-2022学年重庆市万州国本中学中考猜题数学试卷含解析: 这是一份2021-2022学年重庆市万州国本中学中考猜题数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,对于点A,,若点,下列说法等内容,欢迎下载使用。

    2021-2022学年浙江省杭州市育才中学中考猜题数学试卷含解析: 这是一份2021-2022学年浙江省杭州市育才中学中考猜题数学试卷含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,﹣0.2的相反数是等内容,欢迎下载使用。

    2021-2022学年铜陵市重点中学中考猜题数学试卷含解析: 这是一份2021-2022学年铜陵市重点中学中考猜题数学试卷含解析,共24页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map