年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年安徽省宿州市埇桥集团中考数学对点突破模拟试卷含解析

    2021-2022学年安徽省宿州市埇桥集团中考数学对点突破模拟试卷含解析第1页
    2021-2022学年安徽省宿州市埇桥集团中考数学对点突破模拟试卷含解析第2页
    2021-2022学年安徽省宿州市埇桥集团中考数学对点突破模拟试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年安徽省宿州市埇桥集团中考数学对点突破模拟试卷含解析

    展开

    这是一份2021-2022学年安徽省宿州市埇桥集团中考数学对点突破模拟试卷含解析,共23页。试卷主要包含了下列各组数中,互为相反数的是,八边形的内角和为,如图图形中是中心对称图形的是,计算3–等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为  

    A. B. C.2 D.1
    2.下列各图中,∠1与∠2互为邻补角的是( )
    A. B.
    C. D.
    3.下列各组数中,互为相反数的是(  )
    A.﹣1与(﹣1)2 B.(﹣1)2与1 C.2与 D.2与|﹣2|
    4.八边形的内角和为(  )
    A.180° B.360° C.1 080° D.1 440°
    5.已知一个正多边形的一个外角为36°,则这个正多边形的边数是(  )
    A.8 B.9 C.10 D.11
    6.如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列结论:
    ①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    7.如图图形中是中心对称图形的是(  )
    A. B.
    C. D.
    8.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为(  )
    A.1 B.4 C.8 D.12
    9.计算3–(–9)的结果是( )
    A.12 B.–12 C.6 D.–6
    10.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为

    A.80° B.50° C.30° D.20°
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在△ABC中,BC=7,,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围______.

    12.已知x+y=,xy=,则x2y+xy2的值为____.
    13.正十二边形每个内角的度数为 .
    14.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t2,那么飞机着陆后滑行_____秒停下.
    15.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为______.
    16.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.

    17.关于x的一元二次方程有实数根,则a的取值范围是 __________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.

    (1)求证:△PFA∽△ABE;
    (2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
    (3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:   .
    19.(5分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点 C作AD的垂线 EF交直线 AD于点 E.
    (1)求证:EF是⊙O的切线;
    (2)连接BC,若AB=5,BC=3,求线段AE的长.

    20.(8分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.
    (1)如图1,猜想∠QEP=   °;
    (2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;
    (3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.

    21.(10分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
    (1)求证:BF=CD;
    (2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.

    22.(10分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.
    (1)若点D的横坐标为2,求抛物线的函数解析式;
    (2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
    (3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?

    23.(12分)(14分)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.

    (1)求抛物线的解析式;
    (2)当0<t≤8时,求△APC面积的最大值;
    (3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.
    24.(14分)下面是一位同学的一道作图题:
    已知线段a、b、c(如图),求作线段x,使

    他的作法如下:
    (1)以点O为端点画射线,.
    (2)在上依次截取,.
    (3)在上截取.
    (4)联结,过点B作,交于点D.
    所以:线段________就是所求的线段x.
    ①试将结论补完整
    ②这位同学作图的依据是________
    ③如果,,,试用向量表示向量.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.
    【详解】
    连接OM、OD、OF,
    ∵正六边形ABCDEF内接于⊙O,M为EF的中点,
    ∴OM⊥OD,OM⊥EF,∠MFO=60°,
    ∴∠MOD=∠OMF=90°,
    ∴OM=OF•sin∠MFO=2×=,
    ∴MD=,
    故选A.

    【点睛】
    本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.
    2、D
    【解析】
    根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.
    故选D.
    3、A
    【解析】
    根据相反数的定义,对每个选项进行判断即可.
    【详解】
    解:A、(﹣1)2=1,1与﹣1 互为相反数,正确;
    B、(﹣1)2=1,故错误;
    C、2与互为倒数,故错误;
    D、2=|﹣2|,故错误;
    故选:A.
    【点睛】
    本题考查了相反数的定义,解题的关键是掌握相反数的定义.
    4、C
    【解析】
    试题分析:根据n边形的内角和公式(n-2)×180º 可得八边形的内角和为(8-2)×180º=1080º,故答案选C.
    考点:n边形的内角和公式.
    5、C
    【解析】
    试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是360÷36=10,故选C.
    考点:多边形的内角和外角.
    6、C
    【解析】
    首先根据抛物线的开口方向可得到a<0,抛物线交y轴于正半轴,则c>0,而抛物线与x轴的交点中,﹣2<x1<﹣1、0<x2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断
    【详解】
    由图知:抛物线的开口向下,则a<0;抛物线的对称轴x=﹣>﹣1,且c>0;
    ①由图可得:当x=﹣2时,y<0,即4a﹣2b+c<0,故①正确;
    ②已知x=﹣>﹣1,且a<0,所以2a﹣b<0,故②正确;
    ③抛物线对称轴位于y轴的左侧,则a、b同号,又c>0,故abc>0,所以③不正确;
    ④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正确;
    因此正确的结论是①②④.
    故选:C.
    【点睛】
    本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.
    7、B
    【解析】
    把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.
    【详解】
    解:根据中心对称图形的定义可知只有B选项是中心对称图形,故选择B.
    【点睛】
    本题考察了中心对称图形的含义.
    8、B
    【解析】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
    【详解】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
    则x1、x2为方程ax2+bx+c=0的两根,
    ∴x1+x2=-,x1•x2=,
    ∴AB=|x1-x2|====,
    ∵△ABP组成的三角形恰为等腰直角三角形,
    ∴||=•,
    =,
    ∴b2-1ac=1.
    故选B.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.
    9、A
    【解析】
    根据有理数的减法,即可解答.
    【详解】

    故选A.
    【点睛】
    本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相
    反数.
    10、D
    【解析】
    试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.

    考点:平行线的性质;三角形的外角的性质.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    分析:根据题意作出合适的辅助线,然后根据题意即可求得PB的取值范围.
    详解:作AD⊥BC于点D,作PE⊥BC于点E.∵在△ABC 中,BC=7,AC=3,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由题意可得,当PB=PC时,点C恰好在以点P为圆心,PB为半径圆上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴,即,得:BP=.故答案为0<PB<.

    点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    12、3
    【解析】
    分析:因式分解,把已知整体代入求解.
    详解:x2y+xy2=xy(x+y)=3.
    点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).
    (2)公式法:完全平方公式,平方差公式.
    (3)十字相乘法.
    因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.
    13、
    【解析】
    首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.
    【详解】
    试题分析:正十二边形的每个外角的度数是:=30°,
    则每一个内角的度数是:180°﹣30°=150°.
    故答案为150°.
    14、1
    【解析】
    飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.
    【详解】
    由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750
    即当t=1秒时,飞机才能停下来.
    故答案为1.
    【点睛】
    本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.
    15、1
    【解析】
    首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.
    解:设黄球的个数为x个,
    根据题意得:=2/3解得:x=1.
    ∴黄球的个数为1.
    16、4m 
    【解析】
    设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可.
    【详解】
    设路灯的高度为x(m),
    ∵EF∥AD,
    ∴△BEF∽△BAD,
    ∴,
    即,
    解得:DF=x﹣1.8,
    ∵MN∥AD,
    ∴△CMN∽△CAD,
    ∴,
    即,
    解得:DN=x﹣1.5,
    ∵两人相距4.7m,
    ∴FD+ND=4.7,
    ∴x﹣1.8+x﹣1.5=4.7,
    解得:x=4m,
    答:路灯AD的高度是4m.
    17、a≤1且a≠0
    【解析】
    ∵关于x的一元二次方程有实数根,
    ∴ ,解得:,
    ∴a的取值范围为:且 .
    点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此 ;
    (2)这道一元二次方程有实数根,因此 ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)3或.(3)或0<
    【解析】
    (1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
    (2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
    (3)此题首先应针对点的位置分为两种大情况:①与AE相切,② 与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.
    【详解】
    (1)证明:∵矩形ABCD,
    ∴AD∥BC.

    ∴∠PAF=∠AEB.
    又∵PF⊥AE,

    ∴△PFA∽△ABE.
    (2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,
    则有PE∥AB
    ∴四边形ABEP为矩形,
    ∴PA=EB=3,即x=3.
    情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,
    ∵∠PAF=∠AEB,
    ∴∠PEF=∠PAF.
    ∴PE=PA.
    ∵PF⊥AE,
    ∴点F为AE的中点,




    ∴满足条件的x的值为3或
    (3) 或
    【点睛】
    两组角对应相等,两三角形相似.
    19、(1)证明见解析
    (2)
    【解析】
    (1)连接OC,根据等腰三角形的性质、平行线的判定得到OC∥AE,得到OC⊥EF,根据切线的判定定理证明;
    (2)根据勾股定理求出AC,证明△AEC∽△ACB,根据相似三角形的性质列出比例式,计算即可.
    【详解】
    (1)证明:连接OC,

    ∵OA=OC,
    ∴∠OCA=∠BAC,
    ∵点C是的中点,
    ∴∠EAC=∠BAC,
    ∴∠EAC=∠OCA,
    ∴OC∥AE,
    ∵AE⊥EF,
    ∴OC⊥EF,即EF是⊙O的切线;
    (2)解:∵AB为⊙O的直径,
    ∴∠BCA=90°,
    ∴AC==4,
    ∵∠EAC=∠BAC,∠AEC=∠ACB=90°,
    ∴△AEC∽△ACB,
    ∴,
    ∴AE=.
    【点睛】
    本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键.
    20、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)
    【解析】
    (1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;
    (2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;
    (3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.
    【详解】
    解:(1)∠QEP=60°;
    证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,
    ∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,
    则在△CPA和△CQB中,

    ∴△CQB≌△CPA(SAS),
    ∴∠CQB=∠CPA,
    又因为△PEM和△CQM中,∠EMP=∠CMQ,
    ∴∠QEP=∠QCP=60°.
    故答案为60;

    (2)∠QEP=60°.以∠DAC是锐角为例.
    证明:如图2,∵△ABC是等边三角形,
    ∴AC=BC,∠ACB=60°,
    ∵线段CP绕点C顺时针旋转60°得到线段CQ,
    ∴CP=CQ,∠PCQ=60°,
    ∴∠ACB+∠BCP=∠BCP+∠PCQ,
    即∠ACP=∠BCQ,
    在△ACP和△BCQ中,

    ∴△ACP≌△BCQ(SAS),
    ∴∠APC=∠Q,
    ∵∠1=∠2,
    ∴∠QEP=∠PCQ=60°; 

    (3)连结CQ,作CH⊥AD于H,如图3,
    与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,
    ∵∠DAC=135°,∠ACP=15°,
    ∴∠APC=30°,∠CAH=45°,
    ∴△ACH为等腰直角三角形,
    ∴AH=CH=AC=×4=,
    在Rt△PHC中,PH=CH=,
    ∴PA=PH−AH=-,
    ∴BQ=−.
    【点睛】
    本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.
    21、(1)证明见解析;(2)12
    【解析】
    (1)由平行四边形的性质和角平分线得出∠BAF=∠BFA,即可得出AB=BF;
    (2)由题意可证△ABF为等边三角形,点E是AF的中点. 可求EF、BF的值,即可得解.
    【详解】
    解:(1)证明:∵ 四边形ABCD为平行四边形,
    ∴ AB=CD,∠FAD=∠AFB
    又∵ AF平分∠BAD,
    ∴ ∠FAD=∠FAB
    ∴ ∠AFB=∠FAB
    ∴ AB=BF
    ∴ BF=CD
    (2)解:由题意可证△ABF为等边三角形,点E是AF的中点
    在Rt△BEF中,∠BFA=60°,BE=,
    可求EF=2,BF=4
    ∴ 平行四边形ABCD的周长为12
    22、(1)y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)(﹣4,﹣)和(﹣6,﹣3)(3)(1,﹣4).
    【解析】
    试题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PH⊥x轴于H,设点P的坐标为(m,n),分△BPA∽△ABC和△PBA∽△ABC,根据相似三角形的性质计算即可;(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可.
    试题解析:(1)∵y=a(x+3)(x﹣1),
    ∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),
    ∵直线y=﹣x+b经过点A,
    ∴b=﹣3,
    ∴y=﹣x﹣3,
    当x=2时,y=﹣5,
    则点D的坐标为(2,﹣5),
    ∵点D在抛物线上,
    ∴a(2+3)(2﹣1)=﹣5,
    解得,a=﹣,
    则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
    (2)作PH⊥x轴于H,
    设点P的坐标为(m,n),
    当△BPA∽△ABC时,∠BAC=∠PBA,
    ∴tan∠BAC=tan∠PBA,即=,
    ∴=,即n=﹣a(m﹣1),
    ∴,
    解得,m1=﹣4,m2=1(不合题意,舍去),
    当m=﹣4时,n=5a,
    ∵△BPA∽△ABC,
    ∴=,即AB2=AC•PB,
    ∴42=•,
    解得,a1=(不合题意,舍去),a2=﹣,
    则n=5a=﹣,
    ∴点P的坐标为(﹣4,﹣);
    当△PBA∽△ABC时,∠CBA=∠PBA,
    ∴tan∠CBA=tan∠PBA,即=,
    ∴=,即n=﹣3a(m﹣1),
    ∴,
    解得,m1=﹣6,m2=1(不合题意,舍去),
    当m=﹣6时,n=21a,
    ∵△PBA∽△ABC,
    ∴=,即AB2=BC•PB,
    ∴42=•,
    解得,a1=(不合题意,舍去),a2=﹣,
    则点P的坐标为(﹣6,﹣),
    综上所述,符合条件的点P的坐标为(﹣4,﹣)和(﹣6,﹣);

    (3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,
    则tan∠DAN===,
    ∴∠DAN=60°,
    ∴∠EDF=60°,
    ∴DE==EF,
    ∴Q的运动时间t=+=BE+EF,
    ∴当BE和EF共线时,t最小,
    则BE⊥DM,E(1,﹣4).

    考点:二次函数综合题.
    23、(1);(2)12;(3)t=或t=或t=1.
    【解析】
    试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.
    试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,
    ∴x1+x2=8,
    由.
    解得:.
    ∴B(2,0)、C(6,0)
    则4m﹣16m+4m+2=0,
    解得:m=,
    ∴该抛物线解析式为:y=;.
    (2)可求得A(0,3)
    设直线AC的解析式为:y=kx+b,


    ∴直线AC的解析式为:y=﹣x+3,
    要构成△APC,显然t≠6,分两种情况讨论:
    当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),

    ∵P(t,),∴PF=,
    ∴S△APC=S△APF+S△CPF
    =
    =
    =,
    此时最大值为:,
    ②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),
    ∵P(t,),∴PM=,
    ∴S△APC=S△APF﹣S△CPF=
    =
    =,
    当t=8时,取最大值,最大值为:12,
    综上可知,当0<t≤8时,△APC面积的最大值为12;
    (3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,
    Q(t,3),P(t,),
    ①当2<t≤6时,AQ=t,PQ=,
    若:△AOB∽△AQP,则:,
    即:,
    ∴t=0(舍),或t=,
    若△AOB∽△PQA,则:,
    即:,
    ∴t=0(舍)或t=2(舍),
    ②当t>6时,AQ′=t,PQ′=,
    若:△AOB∽△AQP,则:,
    即:,
    ∴t=0(舍),或t=,
    若△AOB∽△PQA,则:,
    即:,
    ∴t=0(舍)或t=1,
    ∴t=或t=或t=1.

    考点:二次函数综合题.
    24、①CD;②平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③.
    【解析】
    ①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证得,即,从而知.
    【详解】
    ①∵,
    ∴OA:AB=OC:CD,
    ∵,,,,
    ∴线段就是所求的线段x,
    故答案为:
    ②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
    故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;
    ③∵、,且,
    ∴,
    ∴,即,
    ∴,
    ∴.
    【点睛】
    本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算.

    相关试卷

    安徽省宿州市埇桥集团达标名校2021-2022学年中考三模数学试题含解析:

    这是一份安徽省宿州市埇桥集团达标名校2021-2022学年中考三模数学试题含解析,共22页。

    安徽省宿州市埇桥区教育集团重点中学2021-2022学年中考数学模拟预测题含解析:

    这是一份安徽省宿州市埇桥区教育集团重点中学2021-2022学年中考数学模拟预测题含解析,共25页。试卷主要包含了答题时请按要求用笔,点A等内容,欢迎下载使用。

    2022年安徽省宿州市埇桥集团达标名校中考数学模拟精编试卷含解析:

    这是一份2022年安徽省宿州市埇桥集团达标名校中考数学模拟精编试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,估计﹣1的值为,魏晋时期的数学家刘徽首创割圆术等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map