终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年安徽省六安市霍邱县重点中学中考三模数学试题含解析

    立即下载
    加入资料篮
    2021-2022学年安徽省六安市霍邱县重点中学中考三模数学试题含解析第1页
    2021-2022学年安徽省六安市霍邱县重点中学中考三模数学试题含解析第2页
    2021-2022学年安徽省六安市霍邱县重点中学中考三模数学试题含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年安徽省六安市霍邱县重点中学中考三模数学试题含解析

    展开

    这是一份2021-2022学年安徽省六安市霍邱县重点中学中考三模数学试题含解析,共24页。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.不等式组的正整数解的个数是(  )
    A.5 B.4 C.3 D.2
    2.下列计算错误的是(  )
    A.4x3•2x2=8x5 B.a4﹣a3=a
    C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣2ab+b2
    3.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为(  )

    A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)
    4.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )

    A.2mn B.(m+n)2 C.(m-n)2 D.m2-n2
    5.如图,将△ABC沿DE,EF翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=142°,则∠C的度数为(  )

    A.38° B.39° C.42° D.48°
    6.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是(  )

    A.①的收入去年和前年相同
    B.③的收入所占比例前年的比去年的大
    C.去年②的收入为2.8万
    D.前年年收入不止①②③三种农作物的收入
    7.如图,在△ABC中,DE∥BC,若,则等于( )

    A. B. C. D.
    8.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于( )

    A.6 B.6 C.3 D.9
    9.如图,数轴上表示的是下列哪个不等式组的解集(  )

    A. B. C. D.
    10.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )
    A. B. C. D.
    11.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是(  )
    A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣1
    12. “车辆随机到达一个路口,遇到红灯”这个事件是( )
    A.不可能事件 B.不确定事件 C.确定事件 D.必然事件
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______
    14.如图,AB是半径为2的⊙O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交⊙O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ACB=120°,②△ACD是等边三角形,③EO的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)

    15.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):

    如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲” 或“乙”),理由是___________.
    16.若一个多边形每个内角为140°,则这个多边形的边数是________.
    17.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.

    18.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.

    20.(6分)某景区内从甲地到乙地的路程是,小华步行从甲地到乙地游玩,速度为,走了后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为,第趟电瓶车距乙地的路程为,为正整数,行进时间为.如图画出了,与的函数图象.

    (1)观察图,其中 , ;
    (2)求第2趟电瓶车距乙地的路程与的函数关系式;
    (3)当时,在图中画出与的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有 趟电瓶车驶过.
    21.(6分) (1)计算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.
    (2)先化简,再求值:(x﹣)÷,其中x=,y=﹣1.
    22.(8分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.
    (1)已知⊙O的半径为1,在点E(1,1),F(﹣,),M(0,-1)中,⊙O的“关联点”为______;
    (2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为,求n的值;
    (3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线y=﹣x+4与x轴,y轴分别交于点A,B.若线段AB上存在⊙D的“关联点”,求m的取值范围.
    23.(8分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.
    24.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.
    求证:BF=AG.

    25.(10分)如图,中,,于,,为边上一点.

    (1)当时,直接写出  ,  .
    (2)如图1,当,时,连并延长交延长线于,求证:.
    (3)如图2,连交于,当且时,求的值.
    26.(12分)解不等式组:,并将它的解集在数轴上表示出来.
    27.(12分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.
    (1)求证:四边形OCED是菱形;
    (2)若∠BAC=30°,AC=4,求菱形OCED的面积.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    先解不等式组得到-1<x≤3,再找出此范围内的正整数.
    【详解】
    解不等式1-2x<3,得:x>-1,
    解不等式≤2,得:x≤3,
    则不等式组的解集为-1<x≤3,
    所以不等式组的正整数解有1、2、3这3个,
    故选C.
    【点睛】
    本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.
    2、B
    【解析】
    根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.
    【详解】
    A选项:4x3•1x1=8x5,故原题计算正确;
    B选项:a4和a3不是同类项,不能合并,故原题计算错误;
    C选项:(-x1)5=-x10,故原题计算正确;
    D选项:(a-b)1=a1-1ab+b1,故原题计算正确;
    故选:B.
    【点睛】
    考查了整式的乘法,关键是掌握整式的乘法各计算法则.
    3、B
    【解析】
    令x=0,y=6,∴B(0,6),
    ∵等腰△OBC,∴点C在线段OB的垂直平分线上,
    ∴设C(a,3),则C '(a-5,3),
    ∴3=3(a-5)+6,解得a=4,
    ∴C(4,3).
    故选B.
    点睛:掌握等腰三角形的性质、函数图像的平移.
    4、C
    【解析】
    解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.
    又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.
    故选C.
    5、A
    【解析】
    分析:根据翻折的性质得出∠A=∠DOE,∠B=∠FOE,进而得出∠DOF=∠A+∠B,利用三角形内角和解答即可.
    详解:∵将△ABC沿DE,EF翻折,∴∠A=∠DOE,∠B=∠FOE,∴∠DOF=∠DOE+∠EOF=∠A+∠B=142°,∴∠C=180°﹣∠A﹣∠B=180°﹣142°=38°.
    故选A.
    点睛:本题考查了三角形内角和定理、翻折的性质等知识,解题的关键是灵活运用这些知识解决问题,学会把条件转化的思想,属于中考常考题型.
    6、C
    【解析】
    A、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;
    B、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×100%=32.5%,此选项错误;
    C、去年②的收入为80000×=28000=2.8(万元),此选项正确;
    D、前年年收入即为①②③三种农作物的收入,此选项错误,
    故选C.
    【点睛】
    本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
    7、C
    【解析】
    试题解析::∵DE∥BC,
    ∴,
    故选C.
    考点:平行线分线段成比例.
    8、B
    【解析】
    连接DF,根据垂径定理得到 , 得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.
    【详解】
    解:连接DF,

    ∵直径CD过弦EF的中点G,
    ∴,
    ∴∠DCF=∠EOD=30°,
    ∵CD是⊙O的直径,
    ∴∠CFD=90°,
    ∴CF=CD•cos∠DCF=12× = ,
    故选B.
    【点睛】
    本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.
    9、B
    【解析】
    根据数轴上不等式解集的表示方法得出此不等式组的解集,再对各选项进行逐一判断即可.
    【详解】
    解:由数轴上不等式解集的表示方法得出此不等式组的解集为:x≥-3,
    A、不等式组的解集为x>-3,故A错误;
    B、不等式组的解集为x≥-3,故B正确;
    C、不等式组的解集为x<-3,故C错误;
    D、不等式组的解集为-3<x<5,故D错误.
    故选B.
    【点睛】
    本题考查的是在数轴上表示一元一次不等式组的解集,根据题意得出数轴上不等式组的解集是解答此题的关键.
    10、D
    【解析】
    A选项:

    ∠1+∠2=360°-90°×2=180°;
    B选项:

    ∵∠2+∠3=90°,∠3+∠4=90°,
    ∴∠2=∠4,
    ∵∠1+∠4=180°,
    ∴∠1+∠2=180°;
    C选项:

    ∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,
    ∵∠1+∠EFC=180°,∴∠1+∠2=180°;
    D选项:∠1和∠2不一定互补.
    故选D.
    点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.
    11、A
    【解析】
    根据题意可知x=-1,
    平均数=(-6-1-1-1+2+1)÷6=-1,
    ∵数据-1出现两次最多,
    ∴众数为-1,
    极差=1-(-6)=2,
    方差= [(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.
    故选A.
    12、B
    【解析】
    根据事件发生的可能性大小判断相应事件的类型即可.
    【详解】
    “车辆随机到达一个路口,遇到红灯”是随机事件.
    故选:.
    【点睛】
    本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.
    【详解】设反比例函数解析式为y=,
    由题意得:m2=2m×(-1),
    解得:m=-2或m=0(不符题意,舍去),
    所以点A(-2,-2),点B(-4,1),
    所以k=4,
    所以反比例函数解析式为:y=,
    故答案为y=.
    【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.
    14、①②
    【解析】
    根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什么轨迹上运动,便可解决问题.
    【详解】
    如图1,连接OA和OB,作OF⊥AB.
    由题知: 沿着弦AB折叠,正好经过圆心O
    ∴OF=OA= OB
    ∴∠AOF=∠BOF=60°
    ∴∠AOB=120°
    ∴∠ACB=120°(同弧所对圆周角相等)
    ∠D=∠AOB=60°(同弧所对的圆周角是圆心角的一半)
    ∴∠ACD=180°-∠ACB=60°
    ∴△ACD是等边三角形(有两个角是60°的三角形是等边三角形)
    故,①②正确

       下面研究问题EO的最小值是否是1
     
    如图2,连接AE和EF
    ∵△ACD是等边三角形,E是CD中点
    ∴AE⊥BD(三线合一)
    又∵OF⊥AB
    ∴F是AB中点
    即,EF是△ABE斜边中线
    ∴AF=EF=BF
    即,E点在以AB为直径的圆上运动.
    所以,如图3,当E、O、F在同一直线时,OE长度最小
    此时,AE=EF,AE⊥EF
    ∵⊙O的半径是2,即OA=2,OF=1
    ∴AF= (勾股定理)
    ∴OE=EF-OF=AF-OF=-1
    所以,③不正确
    综上所述:①②正确,③不正确.
    故答案是:①②.
    【点睛】
    考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.
    15、乙 乙的比赛成绩比较稳定.
    【解析】
    观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.
    【详解】
    观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;
    所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.
    故答案为乙,乙的比赛成绩比较稳定.
    【点睛】
    本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    16、九
    【解析】
    根据多边形的内角和定理:180°•(n-2)进行求解即可.
    【详解】
    由题意可得:180°×(n−2)=140°×n,
    解得n=9,
    故多边形是九边形.
    故答案为9.
    【点睛】
    本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.
    17、4m 
    【解析】
    设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可.
    【详解】
    设路灯的高度为x(m),
    ∵EF∥AD,
    ∴△BEF∽△BAD,
    ∴,
    即,
    解得:DF=x﹣1.8,
    ∵MN∥AD,
    ∴△CMN∽△CAD,
    ∴,
    即,
    解得:DN=x﹣1.5,
    ∵两人相距4.7m,
    ∴FD+ND=4.7,
    ∴x﹣1.8+x﹣1.5=4.7,
    解得:x=4m,
    答:路灯AD的高度是4m.
    18、50°
    【解析】
    根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.
    【详解】
    解:∵AB=AC,∠BAC=80°,
    ∴∠B=∠C=(180°﹣80°)÷2=50°;
    ∵AD∥BC,
    ∴∠DAC=∠C=50°,
    故答案为50°.
    【点睛】
    本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、证明见解析.
    【解析】
    试题分析:先由平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得到∠AEB=∠GFD=90°,根据“ASA”判定△AEB≌△GFD,从而得到AB=DC,所以有DG=DC.
    试题解析:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.
    考点:1.全等三角形的判定与性质;2.平行四边形的性质.
    20、(1)0.8;2.1;(2);(2)图像见解析,2
    【解析】
    (1)根据小华走了4千米后休息了一段时间和小华的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的时间,再加上1.5即为b的值;
    (2)先求出电瓶车的速度,再根据路程=两地间距-速度×时间即可得出答案;
    (2)结合的图象即可画出的图象,观察图象即可得出答案.
    【详解】
    解:(1),

    故答案为:0.8;2.1.
    (2)根据题意得:
    电瓶车的速度为
    ∴.
    (2)画出函数图象,如图所示.
    观察函数图象,可知:小华在休息后前往乙地的途中,共有2趟电瓶车驶过.
    故答案为:2.

    【点睛】
    本题主要考查一次函数的应用,能够从图象上获取有效信息是解题的关键.
    21、 (1)3;(2) x﹣y,1.
    【解析】
    (1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;
    (2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
    【详解】
    (1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018
    =3×+2-+3-1-1,
    =+2−+3-1-1,
    =3;
    (2)(x﹣)÷,
    =,
    =
    =x-y,
    当x=,y=-1时,原式=−+1=1.
    【点睛】
    本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.
    22、(1)F,M;(1)n=1或﹣1;(3)≤m≤或 ≤m≤.
    【解析】
    (1)根据定义,认真审题即可解题,
    (1)在直角三角形PHQ中勾股定理解题即可,
    (3)当⊙D与线段AB相切于点T时,由sin∠OBA=,得DT=DH1=,进而求出m1=即可,②当⊙D过点A时,连接AD.由勾股定理得DA==DH1=即可解题.
    【详解】
    解:(1)∵OF=OM=1,
    ∴点F、点M在⊙上,
    ∴F、M是⊙O的“关联点”,
    故答案为F,M.
    (1)如图1,过点Q作QH⊥x轴于H.

    ∵PH=1,QH=n,PQ=.
    ∴由勾股定理得,PH1+QH1=PQ1,
    即11+n1=()1,
    解得,n=1或﹣1.
    (3)由y=﹣x+4,知A(3,0),B(0,4)
    ∴可得AB=5
    ①如图1(1),当⊙D与线段AB相切于点T时,连接DT.

    则DT⊥AB,∠DTB=90°
    ∵sin∠OBA=,
    ∴可得DT=DH1=,
    ∴m1=,
    ②如图1(1),当⊙D过点A时,连接AD.

    由勾股定理得DA==DH1=.
    综合①②可得:≤m≤或 ≤m≤.
    【点睛】
    本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.
    23、y=2x2+x﹣3,C点坐标为(﹣,0)或(2,7)
    【解析】
    设抛物线的解析式为y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,进而求出点C的坐标即可.
    【详解】
    设抛物线的解析式为y=ax2+bx+c,
    把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,
    解得,
    ∴抛物线的解析式为y=2x2+x﹣3,
    把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,
    ∴C点坐标为(﹣,0)或(2,7).
    【点睛】
    本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.
    24、见解析
    【解析】
    根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.
    【详解】
    证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,
    又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,
    又∵∠BAC=90°,AE⊥CD,
    ∴∠BAF+∠ADE=90°,∠ACG +∠ADE=90°,
    ∴∠BAF=∠ACG. 又∵AB=CA,

    ∴△ABF≌△CAG(ASA),
    ∴BF=AG
    【点睛】
    此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.
    25、(1),;(2)证明见解析;(3).
    【解析】
    (1)利用相似三角形的判定可得,列出比例式即可求出结论;
    (2)作交于,设,则,根据平行线分线段成比例定理列出比例式即可求出AH和EH,然后根据平行线分线段成比例定理列出比例式即可得出结论;
    (3)作于,根据相似三角形的判定可得,列出比例式可得,设,,,即可求出x的值,根据平行线分线段成比例定理求出,设,,,然后根据勾股定理求出AC,即可得出结论.
    【详解】
    (1)如图1中,当时,.

    ,,


    ,,

    故答案为:,.
    (2)如图中,作交于.

    ,,
    ∴tan∠B=,tan∠ACE= tan∠B=
    ∴BE=2CE,
    ,,设,则,


    ,,



    (3)如图2中,作于.


    ,,







    ,设,,,
    则有,
    解得或(舍弃),

    ,,,
    ,,



    ,设,,,
    在中,,




    【点睛】
    此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.
    26、-1≤x

    相关试卷

    2023年安徽省六安市霍邱县中考一模数学试题(解析版):

    这是一份2023年安徽省六安市霍邱县中考一模数学试题(解析版),共23页。试卷主要包含了 下列各数中比小的数是, 下列计算正确的是等内容,欢迎下载使用。

    2023年安徽省六安市霍邱县中考数学一模试卷(含解析):

    这是一份2023年安徽省六安市霍邱县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年安徽省六安市霍邱县中考数学二模试卷(含解析):

    这是一份2023年安徽省六安市霍邱县中考数学二模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map