|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年安徽省六安市裕安区重点达标名校中考数学模拟预测试卷含解析
    立即下载
    加入资料篮
    2021-2022学年安徽省六安市裕安区重点达标名校中考数学模拟预测试卷含解析01
    2021-2022学年安徽省六安市裕安区重点达标名校中考数学模拟预测试卷含解析02
    2021-2022学年安徽省六安市裕安区重点达标名校中考数学模拟预测试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年安徽省六安市裕安区重点达标名校中考数学模拟预测试卷含解析

    展开
    这是一份2021-2022学年安徽省六安市裕安区重点达标名校中考数学模拟预测试卷含解析,共25页。试卷主要包含了如图,l1∥l2,AF等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在实数π,0,,﹣4中,最大的是(  )
    A.π B.0 C. D.﹣4
    2.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b1.其中正确的项有( )

    A.2个 B.3个 C.4个 D.5个
    3.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则( )
    A.a≠±1 B.a=1 C.a=﹣1 D.a=±1
    4.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
    A.20 B.24 C.28 D.30
    5.某市从今年1月1日起调整居民用水价格,每立方米水费上涨 .小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m1.求该市今年居民用水的价格.设去年居民用水价格为x元/m1,根据题意列方程,正确的是(  )
    A. B.
    C. D.
    6.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为(  )

    A. B. C. D.
    7.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为( )

    A.110° B.115° C.120° D.130°
    8.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1(  )
    A.1 B.2 C.3 D.4
    9.如图,l1∥l2,AF:FB=3:5,BC:CD=3:2,则AE:EC=(  )

    A.5:2 B.4:3 C.2:1 D.3:2
    10.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()

    A.米2 B.米2 C.米2 D.米2
    11.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于( )

    A.10 B.9 C.8 D.6
    12.实数4的倒数是(  )
    A.4 B. C.﹣4 D.﹣
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为_____.

    14.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.

    15.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分

    那么,其中最喜欢足球的学生数占被调查总人数的百分比为____________%
    16.如图,四边形ABCD是菱形,☉O经过点A,C,D,与BC相交于点E,连接AC,AE,若∠D=78°,则∠EAC=________°.

    17.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.

    18.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.

    20.(6分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;将线段绕点逆时针旋转90°得到线段.画出线段;以为顶点的四边形的面积是 个平方单位.

    21.(6分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|
    22.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:

    求本次调查的学生人数;
    求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;
    若该校共有学生1200人,试估计每周课外阅读时间满足的人数.
    23.(8分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.
    (1)若AP=1,则AE= ;
    (2)①求证:点O一定在△APE的外接圆上;
    ②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;
    (3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.

    24.(10分)如图,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上,求证:△CDA≌△CEB.

    25.(10分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?

    图 ① 图②
    26.(12分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5%和,结果在结算时发现,两种耗材的总价相等,求的值.
    27.(12分)如图,已知△ABC内接于,AB是直径,OD∥AC,AD=OC.
    (1)求证:四边形OCAD是平行四边形;
    (2)填空:①当∠B= 时,四边形OCAD是菱形;
    ②当∠B= 时,AD与相切.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据实数的大小比较即可得到答案.
    【详解】
    解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.
    【点睛】
    本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
    2、B
    【解析】
    根据二次函数的图象与性质判断即可.
    【详解】
    ①由抛物线开口向上知: a>1; 抛物线与y轴的负半轴相交知c<1; 对称轴在y轴的右侧知:b>1;所以:abc<1,故①错误;
    ②对称轴为直线x=-1,,即b=2a,
    所以b-2a=1.故②错误;
    ③由抛物线的性质可知,当x=-1时,y有最小值,
    即a-b+c<(),
    即a﹣b<m(am+b)(m≠﹣1),
    故③正确;
    ④因为抛物线的对称轴为x=1, 且与x轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;
    ⑤由图像可得,当x=2时,y>1,
    即: 4a+2b+c>1,
    故⑤正确.
    故正确选项有③④⑤,
    故选B.
    【点睛】
    本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.
    3、C
    【解析】
    根据一元一次方程的定义即可求出答案.
    【详解】
    由题意可知:,解得a=−1
    故选C.
    【点睛】
    本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.
    4、D
    【解析】
    试题解析:根据题意得=30%,解得n=30,
    所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
    故选D.
    考点:利用频率估计概率.
    5、A
    【解析】
    解:设去年居民用水价格为x元/cm1,根据题意列方程:
    ,故选A.
    6、D
    【解析】
    解:作直径AD,连结BD,如图.∵AD为直径,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故选D.

    点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.
    7、A
    【解析】
    试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.
    解:根据三角形的外角性质,
    ∴∠1+∠2=∠4=110°,
    ∵a∥b,
    ∴∠3=∠4=110°,
    故选A.

    点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.
    8、C
    【解析】
    分析:[x]表示不大于x的最大整数,依据题目中提供的操作进行计算即可.
    详解:121
    ∴对121只需进行3次操作后变为1.
    故选C.
    点睛:本题是一道关于无理数的题目,需要结合定义的新运算和无理数的估算进行求解.
    9、D
    【解析】
    依据平行线分线段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根据平行线分线段成比例定理,即可得出AE与EC的比值.
    【详解】
    ∵l1∥l2,
    ∴,
    设AG=3x,BD=5x,
    ∵BC:CD=3:2,
    ∴CD=BD=2x,
    ∵AG∥CD,
    ∴.
    故选D.
    【点睛】
    本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
    10、C
    【解析】
    连接OD,
    ∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=1.
    ∵∠AOB=90°,CD∥OB,∴CD⊥OA.
    在Rt△OCD中,∵OD=6,OC=1,∴.
    又∵,∴∠DOC=60°.
    ∴(米2).
    故选C.

    11、A
    【解析】
    过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.
    解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.

    设OA=a,BF=b,
    在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
    ∴AM=OA•sin∠AOB=a,OM==a,
    ∴点A的坐标为(a, a).
    ∵点A在反比例函数y=的图象上,
    ∴a×a=a2=12,
    解得:a=5,或a=﹣5(舍去).
    ∴AM=8,OM=1.
    ∵四边形OACB是菱形,
    ∴OA=OB=10,BC∥OA,
    ∴∠FBN=∠AOB.
    在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,
    ∴FN=BF•sin∠FBN=b,BN==b,
    ∴点F的坐标为(10+b,b).
    ∵点F在反比例函数y=的图象上,
    ∴(10+b)×b=12,
    S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10
    故选A.
    “点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
    12、B
    【解析】
    根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.
    【详解】
    解:实数4的倒数是:
    1÷4=.
    故选:B.
    【点睛】
    此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2+4
    【解析】
    如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
    【详解】
    如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
    ∵CH=EF,CH∥EF,
    ∴四边形EFHC是平行四边形,
    ∴EC=FH,
    ∵FA=FC,
    ∴EC+CF=FH+AF=AH,
    ∵四边形ABCD是正方形,
    ∴AC⊥BD,∵CH∥DB,
    ∴AC⊥CH,
    ∴∠ACH=90°,
    在Rt△ACH中,AH==4,
    ∴△EFC的周长的最小值=2+4,
    故答案为:2+4.

    【点睛】
    本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.
    14、6.4
    【解析】
    根据平行投影,同一时刻物长与影长的比值固定即可解题.
    【详解】
    解:由题可知:,
    解得:树高=6.4米.
    【点睛】
    本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.
    15、1%
    【解析】
    依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.
    【详解】
    ∵被调查学生的总数为10÷20%=50人,
    ∴最喜欢篮球的有50×32%=16人,
    则最喜欢足球的学生数占被调查总人数的百分比=×100%=1%,
    故答案为:1.
    【点睛】
    本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
    16、1.
    【解析】
    解:∵四边形ABCD是菱形,∠D=78°,
    ∴∠ACB=(180°-∠D)=51°,
    又∵四边形AECD是圆内接四边形,
    ∴∠AEB=∠D=78°,
    ∴∠EAC=∠AEB-∠ACB=1°.
    故答案为:1°
    17、或.
    【解析】
    由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角. 故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.
    (1) 当∠ONM=90°时,则DN⊥BC.

    过点E作EF⊥BC,垂足为F.(如图)
    ∵在Rt△ABC中,∠A=90°,AB=AC,
    ∴∠C=45°,
    ∵BC=20,
    ∴在Rt△ABC中,,
    ∵DE是△ABC的中位线,
    ∴,
    ∴在Rt△CFE中,,.
    ∵BM=3,BC=20,FC=5,
    ∴MF=BC-BM-FC=20-3-5=12.
    ∵EF=5,MF=12,
    ∴在Rt△MFE中,,
    ∵DE是△ABC的中位线,BC=20,
    ∴,DE∥BC,
    ∴∠DEM=∠EMF,即∠DEO=∠EMF,
    ∴,
    ∴在Rt△ODE中,.
    (2) 当∠MON=90°时,则DN⊥ME.

    过点E作EF⊥BC,垂足为F.(如图)
    ∵EF=5,MF=12,
    ∴在Rt△MFE中,,
    ∴在Rt△MFE中,,
    ∵∠DEO=∠EMF,
    ∴,
    ∵DE=10,
    ∴在Rt△DOE中,.
    综上所述,DO的长是或.
    故本题应填写:或.
    点睛:
    在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.
    18、
    【解析】
    在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.
    【详解】
    在AB上取BN=BE,连接EN,作PM⊥BC于M.

    ∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.
    ∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.
    ∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.
    ∵AB=BC,BN=BE,∴AN=EC.
    ∵∠AEP=90°,∴∠AEB+∠PEC=90°.
    ∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.
    ∵BC=3,EC=2,∴NB=BE=1,∴NE==,∴PC=.
    故答案为:.
    【点睛】
    本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)点B的坐标是(-5,-4);直线AB的解析式为:
    (2)四边形CBED是菱形.理由见解析
    【解析】
    (1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;
    (2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.
    【详解】
    解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,
    得. ∴点B的坐标是(-5,-4)
    设直线AB的解析式为,
    将 A(3,)、B(-5,-4)代入得,
    , 解得:.
    ∴直线AB的解析式为:
    (2)四边形CBED是菱形.理由如下:
    点D的坐标是(3,0),点C的坐标是(-2,0).
    ∵ BE∥轴, ∴点E的坐标是(0,-4).
    而CD =5, BE=5,且BE∥CD.
    ∴四边形CBED是平行四边形
    在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.
    ∴□CBED是菱形
    20、(1)画图见解析;(2)画图见解析;(3)20
    【解析】
    【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;
    (2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;
    (3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.
    【详解】(1)如图所示;
    (2)如图所示;
    (3)结合网格特点易得四边形AA1 B1 A2是正方形,
    AA1=,
    所以四边形AA1 B1 A2的面积为:=20,
    故答案为20.

    【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.
    21、-4
    【解析】
    分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.
    详解:原式=-4+1-2×+-1=-4
    点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.
    22、本次调查的学生人数为200人;B所在扇形的圆心角为,补全条形图见解析;全校每周课外阅读时间满足的约有360人.
    【解析】
    【分析】根据等级A的人数及所占百分比即可得出调查学生人数;
    先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;
    总人数课外阅读时间满足的百分比即得所求.
    【详解】由条形图知,A级的人数为20人,
    由扇形图知:A级人数占总调查人数的,
    所以:人,
    即本次调查的学生人数为200人;
    由条形图知:C级的人数为60人,
    所以C级所占的百分比为:,
    B级所占的百分比为:,
    B级的人数为人,
    D级的人数为:人,
    B所在扇形的圆心角为:,
    补全条形图如图所示:

    因为C级所占的百分比为,
    所以全校每周课外阅读时间满足的人数为:人,
    答:全校每周课外阅读时间满足的约有360人.
    【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.
    23、(1);(2)①证明见解析;②;(3).
    【解析】
    试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;
    (2)①A、P、O、E四点共圆,即可得出结论;
    ②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.
    试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,
    ∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,
    ∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,
    ∴∠AEP=∠PBC,∴△APE∽△BCP,
    ∴,即,解得:AE=,
    故答案为:;
    (2)①∵PF⊥EG,∴∠EOF=90°,
    ∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,
    ∴点O一定在△APE的外接圆上;
    ②连接OA、AC,如图1所示:
    ∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,
    ∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,
    ∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,
    即点O经过的路径长为;
    (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:
    则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,
    设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,
    ∴,即,解得:AE= =,
    ∴x=2时,AE的最大值为1,此时MN的值最大=×1=,
    即△APE的圆心到AB边的距离的最大值为.

    【点睛】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键.
    24、见解析.
    【解析】
    试题分析:根据等腰直角三角形的性质得出CE=CD,BC=AC,再利用全等三角形的判定证明即可.
    试题解析:证明:∵△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,
    ∴CE=CD,BC=AC,
    ∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,
    ∴∠ECB=∠DCA,
    在△CDA与△CEB中,,
    ∴△CDA≌△CEB.
    考点:全等三角形的判定;等腰直角三角形.
    25、(1)0.3 L;(2)在这种滴水状态下一天的滴水量为9.6 L.
    【解析】
    (1)根据点的实际意义可得;
    (2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.
    【详解】
    (1)由图象可知,容器内原有水0.3 L.
    (2)由图象可知W与t之间的函数图象经过点(0,0.3),
    故设函数关系式为W=kt+0.3.
    又因为函数图象经过点(1.5,0.9),
    代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.
    故W与t之间的函数关系式为W=0.4t+0.3.
    当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),
    即在这种滴水状态下一天的滴水量为9.6 L.
    【点睛】
    本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.
    26、(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)的值为95.
    【解析】
    (1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据购买茶艺耗材的数量是陶艺耗材数量的2倍列方程求解即可;
    (2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,根据两种耗材的总价相等列方程求解即可.
    【详解】
    (1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据题意,得.
    解方程,得.
    经检验,是原方程的解,且符合题意
    .
    答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.
    (2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,由题意得:

    整理,得
    解方程,得,(舍去).
    的值为95.
    【点睛】
    本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列方程解决实际问题注意要检验与实际情况是否相符.
    27、(1)证明见解析;(2)① 30°,② 45°
    【解析】
    试题分析:(1)根据已知条件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根据三角形内角和定理得出∠AOC=∠OAD,从而证得OC∥AD,即可证得结论;
    (2)①若四边形OCAD是菱形,则OC=AC,从而证得OC=OA=AC,得出∠即可求得
    ②AD与相切,根据切线的性质得出根据AD∥OC,内错角相等得出从而求得
    试题解析:(方法不唯一)
    (1)∵OA=OC,AD=OC,
    ∴OA=AD,
    ∴∠OAC=∠OCA,∠AOD=∠ADO,
    ∵OD∥AC,
    ∴∠OAC=∠AOD,
    ∴∠OAC=∠OCA=∠AOD=∠ADO,
    ∴∠AOC=∠OAD,
    ∴OC∥AD,
    ∴四边形OCAD是平行四边形;
    (2)①∵四边形OCAD是菱形,
    ∴OC=AC,
    又∵OC=OA,
    ∴OC=OA=AC,


    故答案为
    ②∵AD与相切,

    ∵AD∥OC,


    故答案为

    相关试卷

    江苏省镇江市重点达标名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份江苏省镇江市重点达标名校2021-2022学年中考数学模拟预测试卷含解析,共22页。试卷主要包含了计算-5+1的结果为等内容,欢迎下载使用。

    北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。

    安徽省当涂县重点达标名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份安徽省当涂县重点达标名校2021-2022学年中考数学模拟预测试卷含解析,共18页。试卷主要包含了对于函数y=,下列说法正确的是,下列各式中,正确的是,已知m=,n=,则代数式的值为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map