年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年毕节市重点中学中考押题数学预测卷含解析

    2021-2022学年毕节市重点中学中考押题数学预测卷含解析第1页
    2021-2022学年毕节市重点中学中考押题数学预测卷含解析第2页
    2021-2022学年毕节市重点中学中考押题数学预测卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年毕节市重点中学中考押题数学预测卷含解析

    展开

    这是一份2021-2022学年毕节市重点中学中考押题数学预测卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(共10小题,每小题3分,共30分)
    1.如图,等边△ABC内接于⊙O,已知⊙O的半径为2,则图中的阴影部分面积为( )
    A. B. C. D.
    2.已知二次函数的图象如图所示,若,是这个函数图象上的三点,则的大小关系是( )
    A.B.C.D.
    3.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )
    A.10°B.20°C.50°D.70°
    4.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为( )
    A.B.C.D.
    5.如图,将一副三角板如此摆放,使得BO和CD平行,则∠AOD的度数为( )
    A.10°B.15°C.20°D.25°
    6.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( ).
    A.B.
    C.D.
    7.已知一元二次方程有一个根为2,则另一根为
    A.2B.3C.4D.8
    8.下列四个图案中,不是轴对称图案的是( )
    A.B.C.D.
    9.下列计算正确的是( )
    A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a10
    10.如图,菱形ABCD中,E. F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是( )
    A.12B.16C.20D.24
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.因式分解:x2﹣4= .
    12.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积
    为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;
    取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;
    如此下去…,则正六角星形A4F4B4D4C4E4的面积为_________________.
    13.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.
    14.使得分式值为零的x的值是_________;
    15.直线y=x与双曲线y=在第一象限的交点为(a,1),则k=_____.
    16.圆锥的底面半径为4cm,高为5cm,则它的表面积为______ cm1.
    三、解答题(共8题,共72分)
    17.(8分)解方程组
    18.(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:
    (1)该调查小组抽取的样本容量是多少?
    (2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;
    (3)请估计该市中小学生一天中阳光体育运动的平均时间.
    19.(8分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:
    (1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度.
    (2)利用样本估计该校初三学生选择“中技”观点的人数.
    (3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).
    20.(8分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).
    请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?
    21.(8分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:
    (1)根据上表中的数据,将下表补充完整:
    (2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.
    22.(10分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛. 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 . 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.
    23.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.
    (1)如图①,当α=60°时,连接DD',求DD'和A'F的长;
    (2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;
    (3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.
    24.地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:
    初一:76 88 93 65 78 94 89 68 95 50
    89 88 89 89 77 94 87 88 92 91
    初二:74 97 96 89 98 74 69 76 72 78
    99 72 97 76 99 74 99 73 98 74
    (1)根据上面的数据,将下列表格补充完整;
    整理、描述数据:
    (说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)
    分析数据:
    (2)得出结论:
    你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】解:连接OB、OC,连接AO并延长交BC于H,则AH⊥BC.
    ∵△ABC是等边三角形,∴BH=AB=,OH=1,∴△OBC的面积= ×BC×OH=,则△OBA的面积=△OAC的面积=△OBC的面积=,由圆周角定理得,∠BOC=120°,∴图中的阴影部分面积==.故选A.
    点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键.
    2、A
    【解析】
    先求出二次函数的对称轴,结合二次函数的增减性即可判断.
    【详解】
    解:二次函数的对称轴为直线,
    ∵抛物线开口向下,
    ∴当时,y随x增大而增大,
    ∵,

    故答案为:A.
    【点睛】
    本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性.
    3、B
    【解析】
    要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.
    【详解】
    解:∵要使木条a与b平行,
    ∴∠1=∠2,
    ∴当∠1需变为50 º,
    ∴木条a至少旋转:70º-50º=20º.
    故选B.
    【点睛】
    本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.
    4、A
    【解析】
    由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.
    【详解】
    ∵△ABC中,AC=BC,过点C作CD⊥AB,
    ∴AD=DB=6,∠BDC=∠ADC=90°,
    ∵AE=5,DE∥BC,
    ∴AC=2AE=10,∠EDC=∠BCD,
    ∴sin∠EDC=sin∠BCD=,
    故选:A.
    【点睛】
    本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.
    5、B
    【解析】
    根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答
    【详解】
    根据题意可知∠AOB=∠ABO=45°,∠DOC=30°
    ∵BO∥CD
    ∴∠BOC=∠DCO=90°
    ∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°
    故选B
    【点睛】
    此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等
    6、B
    【解析】
    根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.
    【详解】
    根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.
    故选B.
    【点睛】
    此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.
    7、C
    【解析】
    试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=1.
    考点:根与系数的关系.
    8、B
    【解析】
    根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
    【详解】
    A、是轴对称图形,故本选项错误;
    B、不是轴对称图形,故本选项正确;
    C、是轴对称图形,故本选项错误;
    D、是轴对称图形,故本选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.
    9、B
    【解析】
    根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.
    【详解】
    A、a2•a3=a5,错误;
    B、(a2)3=a6,正确;
    C、不是同类项,不能合并,错误;
    D、a5+a5=2a5,错误;
    故选B.
    【点睛】
    本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.
    10、D
    【解析】
    根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.
    【详解】
    、分别是、的中点,
    是的中位线,

    菱形的周长.
    故选:.
    【点睛】
    本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(x+2)(x-2).
    【解析】试题分析:直接利用平方差公式分解因式得出x2﹣4=(x+2)(x﹣2).
    考点:因式分解-运用公式法
    12、
    【解析】
    ∵正六角星形A2F2B2D2C2E2边长是正六角星形A1F1B1D1C1E边长的,
    ∴正六角星形A2F2B2D2C2E2面积是正六角星形A1F1B1D1C1E面积的.
    同理∵正六角星形A4F4B4D4C4E4边长是正六角星形A1F1B1D1C1E边长的,
    ∴正六角星形A4F4B4D4C4E4面积是正六角星形A1F1B1D1C1E面积的.
    13、3
    【解析】
    在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.
    【详解】
    解:根据题意得,=0.3,解得m=3.
    故答案为:3.
    【点睛】
    本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.
    14、2
    【解析】
    根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.
    【详解】
    解:要使分式有意义则 ,即
    要使分式为零,则 ,即
    综上可得
    故答案为2
    【点睛】
    本题主要考查分式的性质,关键在于分式的分母不能为0.
    15、1
    【解析】
    分析:首先根据正比例函数得出a的值,然后将交点坐标代入反比例函数解析式得出k的值.
    详解:将(a,1)代入正比例函数可得:a=1, ∴交点坐标为(1,1),
    ∴k=1×1=1.
    点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.根据正比例函数得出交点坐标是解题的关键.
    16、
    【解析】
    利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径的平方+底面周长×母线长÷1.
    【详解】
    底面半径为4cm,则底面周长=8πcm,底面面积=16πcm1;
    由勾股定理得,母线长=,
    圆锥的侧面面积,
    ∴它的表面积=(16π+4 )cm1= cm1 ,
    故答案为:.
    【点睛】
    本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
    三、解答题(共8题,共72分)
    17、
    【解析】
    解:由①得③
    把③代入②得
    把代人③得
    ∴原方程组的解为
    18、(4)500;(4)440,作图见试题解析;(4)4.4.
    【解析】
    (4)利用0.5小时的人数除以其所占比例,即可求出样本容量;
    (4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;
    (4)计算出该市中小学生一天中阳光体育运动的平均时间即可.
    【详解】
    解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,
    ∴本次调查共抽样了500名学生;
    (4)4.5小时的人数为:500×4.4=440(人),如图所示:
    (4)根据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时.
    考点:4.频数(率)分布直方图;4.扇形统计图;4.加权平均数.
    19、(4)A高中观点.4. 446;(4)456人;(4).
    【解析】
    试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;
    (4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;
    (4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.
    试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;
    (4)∵800×44%=456(人),
    ∴估计该校初三学生选择“中技”观点的人数约是456人;
    (4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,
    列表如下:
    共有44种等可能的结果数,其中出现4女的情况共有4种.
    所以恰好选到4位女同学的概率=.
    考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.
    20、(1)详见解析;(2)40%;(3)105;(4).
    【解析】
    (1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;
    (2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;
    (3)根据样本估计总体的方法计算即可;
    (4)利用概率公式即可得出结论.
    【详解】
    (1)由条形图知,男生共有:10+20+13+9=52人,
    ∴女生人数为100-52=48人,
    ∴参加武术的女生为48-15-8-15=10人,
    ∴参加武术的人数为20+10=30人,
    ∴30÷100=30%,
    参加器乐的人数为9+15=24人,
    ∴24÷100=24%,
    补全条形统计图和扇形统计图如图所示:
    (2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.
    答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.
    (3)500×21%=105(人).
    答:估计其中参加“书法”项目活动的有105人.
    (4).
    答:正好抽到参加“器乐”活动项目的女生的概率为.
    【点睛】
    此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    21、(1)8.2;9;9;6.4;(2)赞同甲的说法.理由见解析.
    【解析】
    (1)利用平均数、众数、中位数的定义和方差的计算公式求解;
    (2)利用甲的平均数大得到总营业额高,方差小,营业额稳定进行判断.
    【详解】
    (1)甲的平均数;
    乙的众数为9;
    丙的中位数为9,
    丙的方差;
    故答案为8.2;9;9;6.4;
    (2)赞同甲的说法.理由是:甲的平均数高,总营业额比乙、丙都高,每月的营业额比较稳定.
    【点睛】
    本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小.记住方差的计算公式.也考查了平均数、众数和中位数.
    22、 (1);(2)
    【解析】
    1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.
    【详解】
    解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;
    (2)画树状图得:
    ∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,
    ∴恰好选中甲、乙两人的概率为:
    【点睛】
    此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
    23、(1)DD′=1,A′F= 4﹣;(2);(1).
    【解析】
    (1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;
    ②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;
    (2)由△A′DF∽△A′D′C,可推出DF的长,同理可得△CDE∽△CB′A′,可求出DE的长,即可解决问题;
    (1)如图③中,作FG⊥CB′于G,由S△ACF=•AC•CF=•AF•CD,把问题转化为求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;
    【详解】
    解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',
    ∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.
    ∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,
    ∴DD′=CD=1.
    ②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,
    ∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.
    在Rt△CD′F中,∵tan∠D′CF=,
    ∴D′F=,∴A′F=A′D′﹣D′F=4﹣.
    (2)如图②中,在Rt△A′CD′中,∵∠D′=90°,
    ∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,
    ∴△A′DF∽△A′D′C,∴,∴,
    ∴DF=.
    同理可得△CDE∽△CB′A′,∴,∴,
    ∴ED=,∴EF=ED+DF=.
    (1)如图③中,作FG⊥CB′于G.∵四边形A′B′CD′是矩形,∴GF=CD′=CD=1.
    ∵S△CEF=•EF•DC=•CE•FG,
    ∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.
    ∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,
    ∴AC2=AD•AF,∴AF=.
    ∵S△ACF=•AC•CF=•AF•CD,
    ∴AC•CF=AF•CD=.
    24、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.
    【解析】
    (1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;
    (2)根据平均数、众数、中位数的统计意义回答.
    【详解】
    (1)补全表格如下:
    整理、描述数据:
    初一成绩x满足10≤x≤19的有:11 19 19 11 19 19 17 11,共1个.
    故答案为:1.
    分析数据:
    在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;
    把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2.
    故答案为:19,2.
    (2)初一年级掌握生态环保知识水平较好.
    因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.
    【点睛】
    本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.
    月份
    销售额
    人员
    第1月
    第2月
    第3月
    第4月
    第5月

    6
    9
    10
    8
    8

    5
    7
    8
    9
    9

    5
    9
    10
    5
    11
    统计值
    数值
    人员
    平均数(万元)
    众数(万元)
    中位数(万元)
    方差

    8
    8
    1.76

    7.6
    8
    2.24

    8
    5
    成绩x
    人数
    班级
    初一
    1
    2
    3
    6
    初二
    0
    1
    10
    1
    8
    年级
    平均数
    中位数
    众数
    初一
    84
    88.5
    初二
    84.2
    74

    相关试卷

    如皋实验初中重点中学2021-2022学年中考押题数学预测卷含解析:

    这是一份如皋实验初中重点中学2021-2022学年中考押题数学预测卷含解析,共18页。试卷主要包含了下列方程中,两根之和为2的是等内容,欢迎下载使用。

    2021-2022学年十堰市重点中学中考押题数学预测卷含解析:

    这是一份2021-2022学年十堰市重点中学中考押题数学预测卷含解析,共25页。试卷主要包含了下列计算错误的是,的倒数的绝对值是,若=1,则符合条件的m有等内容,欢迎下载使用。

    2021-2022学年临汾市重点中学中考押题数学预测卷含解析:

    这是一份2021-2022学年临汾市重点中学中考押题数学预测卷含解析,共16页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map