2021-2022学年安徽省宿州市泗县中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,△ABC中,AD⊥BC,AB=AC,∠BAD=30°,且AD=AE,则∠EDC等于( )
A.10° B.12.5° C.15° D.20°
2.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于( )
A.30° B.40° C.50° D.60°
3.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为( )
A. B.
C. D.
4.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为( )
A.1 B.2 C.﹣1 D.﹣2
5.在中,,,下列结论中,正确的是( )
A. B.
C. D.
6.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为( )
A. B.
C. D.
7.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )
A.3m B. m C. m D.4m
8.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是( )
A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形
9.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为( )
A.32° B.42° C.46° D.48°
10.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是( )
A.+2 B.﹣3 C.+4 D.﹣1
二、填空题(本大题共6个小题,每小题3分,共18分)
11.要使分式有意义,则x的取值范围为_________.
12.以下两题任选一题作答:
(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中 AB、CD 分别表示一楼、二楼地面的水平,∠ABC=150°,BC 的长是 8m,则乘电梯次点 B 到点 C 上升的高度 h 是_____m.
(2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_____边形.
13.已知∠=32°,则∠的余角是_____°.
14.抛物线y=2x2+4x﹣2的顶点坐标是_______________.
15.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.
16.分解因式:3a2﹣12=___.
三、解答题(共8题,共72分)
17.(8分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛. 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 . 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.
18.(8分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.
19.(8分)计算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.
20.(8分)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,
(1)如图①,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;
(2)如图②,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG=2DM时,求边AG的长;
(3)如图③,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG=4DM时,直接写出边AG的长.
21.(8分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.
22.(10分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
根据上述信息,解答下列各题:
×
(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
统计量
平均数(次)
中位数(次)
众数(次)
方差
…
该班级男生
…
根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.
23.(12分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.
24.如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.
(1)若点A的坐标为(1,0).
①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;
②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;
(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题分析:根据三角形的三线合一可求得∠DAC及∠ADE的度数,根据∠EDC=90°-∠ADE即可得到答案.
∵△ABC中,AD⊥BC,AB=AC,∠BAD=30°,
∴∠DAC=∠BAD=30°,
∵AD=AE(已知),
∴∠ADE=75°
∴∠EDC=90°-∠ADE=15°.
故选C.
考点:本题主要考查了等腰三角形的性质,三角形内角和定理
点评:解答本题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
2、C
【解析】
试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.
∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.
∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC﹣∠DCA="50°." ∴∠BAE=50°.
故选C.
考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.
3、B
【解析】
根据第二象限中点的特征可得: ,
解得: .
在数轴上表示为:
故选B.
考点:(1)、不等式组;(2)、第一象限中点的特征
4、B
【解析】
根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k的方程即可.
【详解】
把x=2代入得,4-6+k=0,
解得k=2.
故答案为:B.
【点睛】
本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.
5、C
【解析】
直接利用锐角三角函数关系分别计算得出答案.
【详解】
∵,,
∴,
∴,
故选项A,B错误,
∵,
∴,
故选项C正确;选项D错误.
故选C.
【点睛】
此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.
6、D
【解析】
试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.
解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,
∴△≥0,
∴4﹣4(k+1)≥0,
解得k≤0,
∵x1+x2=﹣2,x1•x2=k+1,
∴﹣2﹣(k+1)<﹣1,
解得k>﹣2,
不等式组的解集为﹣2<k≤0,
在数轴上表示为:
,
故选D.
点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.
7、B
【解析】
因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.
【详解】
解:∵sin∠CAB=
∴∠CAB=45°.
∵∠C′AC=15°,
∴∠C′AB′=60°.
∴sin60°=,
解得:B′C′=3.
故选:B.
【点睛】
此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.
8、D
【解析】
依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.
【详解】
解:∵∠ACD是△ABC的外角,
∴∠ACD=∠BAC+∠B,
∵CE平分∠DCA,
∴∠ACD=2∠ACE,
∴2∠ACE=∠BAC+∠B,故A选项正确;
∵EF∥BC,CF平分∠BCA,
∴∠BCF=∠CFE,∠BCF=∠ACF,
∴∠ACF=∠EFC,
∴OF=OC,
同理可得OE=OC,
∴EF=2OC,故B选项正确;
∵CF平分∠BCA,CE平分∠ACD,
∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;
∵O不一定是AC的中点,
∴四边形AECF不一定是平行四边形,
∴四边形AFCE不一定是矩形,故D选项错误,
故选D.
【点睛】
本题考查三角形外角性质,角平分线的定义,以及平行线的性质.
9、D
【解析】
根据平行线的性质与对顶角的性质求解即可.
【详解】
∵a∥b,
∴∠BCA=∠2,
∵∠BAC=100°,∠2=32°
∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.
∴∠1=∠CBA=48°.
故答案选D.
【点睛】
本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.
10、D
【解析】
试题解析:因为|+2|=2,|-3|=3,|+4|=4,|-1|=1,
由于|-1|最小,所以从轻重的角度看,质量是-1的工件最接近标准工件.
故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x≠1
【解析】
由题意得
x-1≠0,
∴x≠1.
故答案为x≠1.
12、4 8
【解析】
(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;
(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为
故可列出方程求解.
【详解】
(1)∵∠ABC=150°,∴斜面BC的坡角为30°,
∴h==4m
(2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为
依题意得
解得n=8
故为八边形.
【点睛】
此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.
13、58°
【解析】
根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.
【详解】
解:∠α的余角是:90°-32°=58°.
故答案为58°.
【点睛】
本题考查余角,解题关键是掌握互为余角的两个角的和为90度.
14、(﹣1,﹣1)
【解析】
利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.
【详解】
x=-=-1,
把x=-1代入得:y=2-1-2=-1.
则顶点的坐标是(-1,-1).
故答案是:(-1,-1).
【点睛】
本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.
15、
【解析】
由题意易得四边形ABFE是正方形,
设AB=1,CF=x,则有BC=x+1,CD=1,
∵四边形CDEF和矩形ABCD相似,
∴CD:BC=FC:CD,
即1:(x+1)=x:1,
∴x=或x=(舍去),
∴ =,
故答案为.
【点睛】本题考查了折叠的性质,相似多边形的性质等,熟练掌握相似多边形的面积比等于相似比的平方是解题的关键.
16、3(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).
三、解答题(共8题,共72分)
17、 (1);(2)
【解析】
1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.
【详解】
解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;
(2)画树状图得:
∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,
∴恰好选中甲、乙两人的概率为:
【点睛】
此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
18、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
【解析】
分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
详解:(1)∵tan∠AOH==
∴AH=OH=4
∴A(-4,3),代入,得
k=-4×3=-12
∴反比例函数为
∴
∴m=6
∴B(6,-2)
∴
∴=,b=1
∴一次函数为
(2)
△AHO的周长为:3+4+5=12
点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
19、
【解析】
直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.
【详解】
原式
.
【点睛】
考核知识点:三角函数混合运算.正确计算是关键.
20、(1)结论:BE=DG,BE⊥DG.理由见解析;(1)AG=1;(3)满足条件的AG的长为1或1.
【解析】
(1)结论:BE=DG,BE⊥DG.只要证明△BAE≌△DAG(SAS),即可解决问题;
(1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.由A,D,E,G四点共圆,推出∠ADO=∠AEG=45°,解直角三角形即可解决问题;
(3)分两种情形分别画出图形即可解决问题;
【详解】
(1)结论:BE=DG,BE⊥DG.
理由:如图①中,设BE交DG于点K,AE交DG于点O.
∵四边形ABCD,四边形AEFG都是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAE=∠DAG,
∴△BAE≌△DAG(SAS),
∴BE=DG,∴∠AEB=∠AGD,
∵∠AOG=∠EOK,
∴∠OAG=∠OKE=90°,
∴BE⊥DG.
(1)如图②中,连接EG,作GH⊥AD交DA的延长线于H.
∵∠OAG=∠ODE=90°,
∴A,D,E,G四点共圆,
∴∠ADO=∠AEG=45°,
∵∠DAM=90°,
∴∠ADM=∠AMD=45°,
∴
∵DG=1DM,
∴
∵∠H=90°,
∴∠HDG=∠HGD=45°,
∴GH=DH=4,
∴AH=1,
在Rt△AHG中,
(3)①如图③中,当点E在CD的延长线上时.作GH⊥DA交DA的延长线于H.
易证△AHG≌△EDA,可得GH=AB=1,
∵DG=4DM.AM∥GH,
∴
∴DH=8,
∴AH=DH﹣AD=6,
在Rt△AHG中,
②如图3﹣1中,当点E在DC的延长线上时,易证:△AKE≌△GHA,可得AH=EK=BC=1.
∵AD∥GH,
∴
∵AD=1,
∴HG=10,
在Rt△AGH中,
综上所述,满足条件的AG的长为或.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例定理,等腰直角三角形的性质和判定,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
21、(1)见解析(2)见解析
【解析】
(1)根据旋转变换的定义和性质求解可得;
(2)根据位似变换的定义和性质求解可得.
【详解】
解:(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△DEF即为所求.
【点睛】
本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.
22、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
【解析】
(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
(1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
【详解】
(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
故答案为20,1.
(2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
答:该班级男生有2人.
(1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
∵2>,∴男生比女生的波动幅度大.
【点睛】
本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
23、证明见解析
【解析】
根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.
【详解】
∵EA⊥AB,EC⊥BC,
∴∠EAB=∠ECB=90°,
在Rt△EAB与Rt△ECB中
,
∴Rt△EAB≌Rt△ECB,
∴AB=CB,∠ABE=∠CBE,
∵BD=BD,
在△ABD与△CBD中
,
∴△ABD≌△CBD,
∴AD=CD.
【点睛】
本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.
24、(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大.
【解析】
试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值;
②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;
(2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.
试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:
(x﹣h)2﹣2=0,解得:h=3或h=﹣1,
∵点A在点B的左侧,∴h>0,∴h=3,
∴抛物线l的表达式为:y=(x﹣3)2﹣2,
∴抛物线的对称轴是:直线x=3,
由对称性得:B(5,0),
由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;
②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,
由对称性得:DF=PD,
∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,
∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,
设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),
∵点F、Q在抛物线l上,
∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,
∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],
解得:a=或a=0(舍),∴P(,);
(2)当y=0时,(x﹣h)2﹣2=0,
解得:x=h+2或h﹣2,
∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),
如图3,作抛物线的对称轴交抛物线于点C,
分两种情况:
①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,
则,∴3≤h≤4,
②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,
即:h+2≤2,h≤0,
综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.
考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.
2023年安徽省宿州市泗县中考数学二模试卷(含解析): 这是一份2023年安徽省宿州市泗县中考数学二模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年安徽省宿州市泗县屏山中学中考数学适应性试卷(含解析): 这是一份2023年安徽省宿州市泗县屏山中学中考数学适应性试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省宿州市第十一中学市级名校2021-2022学年中考数学猜题卷含解析: 这是一份安徽省宿州市第十一中学市级名校2021-2022学年中考数学猜题卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,计算±的值为等内容,欢迎下载使用。