![2021-2022学年北京六十六中学中考数学五模试卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13275808/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年北京六十六中学中考数学五模试卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13275808/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年北京六十六中学中考数学五模试卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13275808/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年北京六十六中学中考数学五模试卷含解析
展开
这是一份2021-2022学年北京六十六中学中考数学五模试卷含解析,共20页。试卷主要包含了计算的结果是,已知点A,下列命题中假命题是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是( )
A.3 B. C. D.
2.在△ABC中,若=0,则∠C的度数是( )
A.45° B.60° C.75° D.105°
3.计算的结果是( )
A. B. C.1 D.2
4.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )
A. B. C. D.6
5.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉( )
A.6.5千克 B.7.5千克 C.8.5千克 D.9.5千克
6.如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是( )
A. B. C. D.
7.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
8.下列命题中假命题是( )
A.正六边形的外角和等于 B.位似图形必定相似
C.样本方差越大,数据波动越小 D.方程无实数根
9.在函数y=中,自变量x的取值范围是( )
A.x≥0 B.x≤0 C.x=0 D.任意实数
10.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是( )
A.且 B. C.且 D.
11.下列说法正确的是( )
A.某工厂质检员检测某批灯泡的使用寿命采用普查法
B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6
C.12名同学中有两人的出生月份相同是必然事件
D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是
12.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.
14.已知△ABC∽△DEF,若△ABC与△DEF的相似比为,则△ABC与△DEF对应中线的比为_____.
15.方程的根为_____.
16.抛物线y=mx2+2mx+5的对称轴是直线_____.
17.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.
18.化简:÷(﹣1)=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知抛物线y=ax2+bx+c.
(Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
①求该抛物线的解析式;
②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
(Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
20.(6分)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.
(1)若∠DAB=50°,求∠ATC的度数;
(2)若⊙O半径为2,TC=,求AD的长.
21.(6分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?
22.(8分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与双曲线的一个交点为B(-1,4).求直线与双曲线的表达式;过点B作BC⊥x轴于点C,若点P在双曲线上,且△PAC的面积为4,求点P的坐标.
23.(8分)如图1,在圆中,垂直于弦,为垂足,作,与的延长线交于.
(1)求证:是圆的切线;
(2)如图2,延长,交圆于点,点是劣弧的中点,,,求的长 .
24.(10分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.
(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;
(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.
25.(10分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.
26.(12分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点
(1)MN的长等于_______,
(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)
27.(12分)计算:(﹣1)2018+(﹣)﹣2﹣|2﹣ |+4sin60°;
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据锐角三角函数的性质,可知cosA==,然后根据AC=2,解方程可求得AB=3.
故选A.
点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.
2、C
【解析】
根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
【详解】
由题意,得 cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故选C.
3、A
【解析】
根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.
【详解】
.
故选A.
【点睛】
本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.
4、A
【解析】
根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.
【详解】
∵在矩形ABCD中,AB=4,BC=3,F是AB中点,
∴BF=BG=2,
∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,
∴S1-S2=4×3-=,
故选A.
【点睛】
本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
5、C
【解析】
【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.
【详解】设每个小箱子装洗衣粉x千克,由题意得:
4x+2=36,
解得:x=8.5,
即每个小箱子装洗衣粉8.5千克,
故选C.
【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.
6、D
【解析】
作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),
∴OD=AE=5,
,
∴正方形的面积是: ,故选D.
7、B
【解析】
先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:根据题意,得: ,
解不等式①,得:x>,
解不等式②,得:x>1,
∴不等式组的解集为x>1,
故选:B.
【点睛】
本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.
8、C
【解析】
试题解析:A、正六边形的外角和等于360°,是真命题;
B、位似图形必定相似,是真命题;
C、样本方差越大,数据波动越小,是假命题;
D、方程x2+x+1=0无实数根,是真命题;
故选:C.
考点:命题与定理.
9、C
【解析】
当函数表达式是二次根式时,被开方数为非负数.据此可得.
【详解】
解:根据题意知 ,
解得:x=0,
故选:C.
【点睛】
本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.
10、A
【解析】
根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
【详解】
∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.
故选B.
【点睛】
本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.
11、B
【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.
【详解】
A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;
B. 根据平均数是4求得a的值为2,则方差为 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;
C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;
D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.
故答案选B.
【点睛】
本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.
12、A
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,也是中心对称图形,符合题意;
B、是轴对称图形,不是中心对称图形,不合题意;
C、不是轴对称图形,也不是中心对称图形,不合题意;
D、不是轴对称图形,不是中心对称图形,不合题意.
故选:A.
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、4.4×1
【解析】
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
详解:44000000=4.4×1,
故答案为4.4×1.
点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
14、3:4
【解析】
由于相似三角形的相似比等于对应中线的比,
∴△ABC与△DEF对应中线的比为3:4
故答案为3:4.
15、﹣2或﹣7
【解析】
把无理方程转化为整式方程即可解决问题.
【详解】
两边平方得到:13+2=25,
∴=6,
∴(x+11)(2-x)=36,
解得x=-2或-7,
经检验x=-2或-7都是原方程的解.
故答案为-2或-7
【点睛】
本题考查无理方程,解题的关键是学会把无理方程转化为整式方程.
16、x=﹣1
【解析】
根据抛物线的对称轴公式可直接得出.
【详解】
解:这里a=m,b=2m
∴对称轴x=
故答案为:x=-1.
【点睛】
解答本题关键是识记抛物线的对称轴公式x=.
17、8
【解析】
根据题意作出图形即可得出答案,
【详解】
如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.
【点睛】
此题主要考查矩形的对称性,解题的关键是根据题意作出图形.
18、﹣.
【解析】
直接利用分式的混合运算法则即可得出.
【详解】
原式
.
故答案为:.
【点睛】
此题主要考查了分式的化简,正确掌握运算法则是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(Ⅰ)①y=x2+3x②当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
【解析】
(I)①由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
【详解】
(I)①设抛物线的解析式为y=a(x+2)2﹣3,
∵抛物线经过点B(﹣3,0),
∴0=a(﹣3+2)2﹣3,
解得:a=1,
∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
②设直线AB的解析式为y=kx+m(k≠0),
将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
得:,解得:,
∴直线AB的解析式为y=﹣2x﹣2.
∵直线l与AB平行,且过原点,
∴直线l的解析式为y=﹣2x.
当点P在第二象限时,x<0,如图所示.
S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
∴S=S△POB+S△AOB=﹣3x+2(x<0).
∵3+6≤S≤6+2,
∴,即,
解得:≤x≤,
∴x的取值范围是≤x≤.
当点P′在第四象限时,x>0,
过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
∵S△ABE=×2×3=3,
∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
∵3+6≤S≤6+2,
∴,即,
解得:≤x≤,
∴x的取值范围为≤x≤.
综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
(II)ac≤1,理由如下:
∵当x=c时,y=0,
∴ac2+bc+c=0,
∵c>1,
∴ac+b+1=0,b=﹣ac﹣1.
由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
把x=0代入y=ax2+bx+c,得y=c,
∴抛物线与y轴的交点为(0,c).
∵a>0,
∴抛物线开口向上.
∵当0<x<c时,y>0,
∴抛物线的对称轴x=﹣≥c,
∴b≤﹣2ac.
∵b=﹣ac﹣1,
∴﹣ac﹣1≤﹣2ac,
∴ac≤1.
【点睛】
本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.
20、(2)65°;(2)2.
【解析】
试题分析:(2)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CT⊥OT,CT为⊙O的切线;
(2)证明四边形OTCE为矩形,求得OE的长,在直角△OAE中,利用勾股定理即可求解.
试题解析:(2)连接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT为⊙O的切线;
(2)过O作OE⊥AD于E,则E为AD中点,又∵CT⊥AC,∴OE∥CT,∴四边形OTCE为矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.
考点:2.切线的判定与性质;2.勾股定理;3.圆周角定理.
21、(1)(或)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.
【解析】
(1)依题意代入x的值可得抛物线的表达式.
(2)令y=0可求出x的两个值,再按实际情况筛选.
(3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD.
【详解】
解:(1)如图,设第一次落地时,
抛物线的表达式为
由已知:当时
即
表达式为(或)
(2)令
(舍去).
足球第一次落地距守门员约13米.
(3)解法一:如图,第二次足球弹出后的距离为
根据题意:(即相当于将抛物线向下平移了2个单位)
解得
(米).
答:他应再向前跑17米.
22、(1)直线的表达式为,双曲线的表达方式为;(2)点P的坐标为或
【解析】
分析:(1)将点B(-1,4)代入直线和双曲线解析式求出k和m的值即可;
(2)根据直线解析式求得点A坐标,由S△ACP=AC•|yP|=4求得点P的纵坐标,继而可得答案.
详解:(1)∵直线与双曲线 ()都经过点B(-1,4),
,
,
∴直线的表达式为,双曲线的表达方式为.
(2)由题意,得点C的坐标为C(-1,0),直线与x轴交于点A(3,0),
,
∵,
,
点P在双曲线上,
∴点P的坐标为或.
点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.
23、(1)详见解析;(2)
【解析】
(1)连接OA,利用切线的判定证明即可;
(2)分别连结OP、PE、AE,OP交AE于F点,根据勾股定理解答即可.
【详解】
解:(1)如图,连结OA,
∵OA=OB,OC⊥AB,
∴∠AOC=∠BOC,
又∠BAD=∠BOC,
∴∠BAD=∠AOC
∵∠AOC+∠OAC=90°,
∴∠BAD+∠OAC=90°,
∴OA⊥AD,
即:直线AD是⊙O的切线;
(2)分别连结OP、PE、AE,OP交AE于F点,
∵BE是直径,
∴∠EAB=90°,
∴OC∥AE,
∵OB=,
∴BE=13
∵AB=5,在直角△ABE中,AE=12,EF=6,FP=OP-OF=-=4
在直角△PEF中,FP=4,EF=6,PE2=16+36=52,
在直角△PEB中,BE=13,PB2=BE2-PE2,
PB==3.
【点睛】
本题考查了切线的判定,勾股定理,正确的作出辅助线是解题的关键.
24、(1);(2)列表见解析,.
【解析】
试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
小华
小丽
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
∴P(点M落在如图所示的正方形网格内)==.
考点:1列表或树状图求概率;2平面直角坐标系.
25、(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.
【解析】
试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.
试题解析:(1)根据题意,用一月份A款的数量乘以:50×=40(双).即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.
考点:1.折线统计图;2.条形统计图.
26、(1);(2)见解析.
【解析】
(1)根据勾股定理即可得到结论;
(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P即可得到结果.
【详解】
(1);
(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P
【点睛】
本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键.
27、1.
【解析】
分析:本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
详解:原式=1+4-(2-2)+4×,
=1+4-2+2+2,
=1.
点睛:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
相关试卷
这是一份北京六中学2021-2022学年中考数学模试卷含解析,共18页。试卷主要包含了下列计算正确的是,平面直角坐标系中,若点A等内容,欢迎下载使用。
这是一份2021-2022学年北京六十六中学中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了函数y=ax2+1与等内容,欢迎下载使用。
这是一份2021-2022学年北京大兴区北臧村中学中考数学五模试卷含解析,共24页。试卷主要包含了点M,下面说法正确的个数有等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)