开学活动
搜索
    上传资料 赚现金

    2021中考数学一轮专练(含解析)

    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      2021年中考数学二次函数压轴题专练2.doc
    • 练习
      2021年中考数学二次函数压轴题专练1.doc
    • 练习
      2021中考数学反比例函数专练2.docx
    • 练习
      2021中考 圆专练.doc
    • 练习
      2021年中考数学一次函数专练.doc
    • 练习
      2021中考数学反比例函数专练1.doc
    • 练习
      2021年中考数学 四边形 专练.doc
    • 练习
      2021中考数学 锐角三角函数 专练.doc
    • 练习
      2021中考数学一次函数专练.docx
    • 练习
      2021年中考数学 二次函数的图象及其性质专练.doc
    • 练习
      2021中考数学 一元二次方程及其应用专练.doc
    • 练习
      2021中考二次函数选择填空难题专练.doc
    • 练习
      2021年中考数学《数与式之 二次根式》专练.doc
    2021年中考数学二次函数压轴题专练2第1页
    2021年中考数学二次函数压轴题专练2第2页
    2021年中考数学二次函数压轴题专练2第3页
    2021年中考数学二次函数压轴题专练1第1页
    2021年中考数学二次函数压轴题专练1第2页
    2021年中考数学二次函数压轴题专练1第3页
    2021中考数学反比例函数专练2第1页
    2021中考数学反比例函数专练2第2页
    2021中考数学反比例函数专练2第3页
    2021中考 圆专练第1页
    2021中考 圆专练第2页
    2021中考 圆专练第3页
    2021年中考数学一次函数专练第1页
    2021年中考数学一次函数专练第2页
    2021年中考数学一次函数专练第3页
    2021中考数学反比例函数专练1第1页
    2021中考数学反比例函数专练1第2页
    2021中考数学反比例函数专练1第3页
    2021年中考数学 四边形 专练第1页
    2021年中考数学 四边形 专练第2页
    2021年中考数学 四边形 专练第3页
    2021中考数学 锐角三角函数 专练第1页
    2021中考数学 锐角三角函数 专练第2页
    2021中考数学 锐角三角函数 专练第3页
    2021中考数学一次函数专练第1页
    2021中考数学一次函数专练第2页
    2021中考数学一次函数专练第3页
    2021年中考数学 二次函数的图象及其性质专练第1页
    2021年中考数学 二次函数的图象及其性质专练第2页
    2021年中考数学 二次函数的图象及其性质专练第3页
    2021中考数学 一元二次方程及其应用专练第1页
    2021中考数学 一元二次方程及其应用专练第2页
    2021中考数学 一元二次方程及其应用专练第3页
    2021中考二次函数选择填空难题专练第1页
    2021中考二次函数选择填空难题专练第2页
    2021中考二次函数选择填空难题专练第3页
    2021年中考数学《数与式之 二次根式》专练第1页
    2021年中考数学《数与式之 二次根式》专练第2页
    2021年中考数学《数与式之 二次根式》专练第3页
    还剩44页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021中考数学一轮专练(含解析)

    展开

    这是一份2021中考数学一轮专练(含解析),文件包含2021年中考数学二次函数压轴题专练2doc、2021年中考数学二次函数压轴题专练1doc、2021中考数学反比例函数专练2docx、2021中考圆专练doc、2021年中考数学一次函数专练doc、2021中考数学反比例函数专练1doc、2021年中考数学四边形专练doc、2021中考数学锐角三角函数专练doc、2021中考数学一次函数专练docx、2021年中考数学二次函数的图象及其性质专练doc、2021中考数学一元二次方程及其应用专练doc、2021中考二次函数选择填空难题专练doc、2021年中考数学《数与式之二次根式》专练doc等13份课件配套教学资源,其中PPT共0页, 欢迎下载使用。
    压轴题综合练:《二次函数》1.(2020•随州)如图,在平面直角坐标系中,抛物线y=ax2+bx+1的对称轴为直线x=,其图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)直接写出抛物线的解析式和∠CAO的度数;(2)动点M,N同时从A点出发,点M以每秒3个单位的速度在线段AB上运动,点N以每秒个单位的速度在线段AC上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t(t>0)秒,连接MN,再将线段MN绕点M顺时针旋转90°,设点N落在点D的位置,若点D恰好落在抛物线上,求t的值及此时点D的坐标;(3)在(2)的条件下,设P为抛物线上一动点,Q为y轴上一动点,当以点C,P,Q为顶点的三角形与△MDB相似时,请直接写出点P及其对应的点Q的坐标.(每写出一组正确的结果得1分,至多得4分)2.(2020•黄石)在平面直角坐标系中,抛物线y=﹣x2+kx﹣2k的顶点为N.(1)若此抛物线过点A(﹣3,1),求抛物线的解析式;(2)在(1)的条件下,若抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过C作CD垂直x轴于点D,CD交AB于点E,若CE=ED,求点C坐标;(3)已知点M(2﹣,0),且无论k取何值,抛物线都经过定点H,当∠MHN=60°时,求抛物线的解析式.3.(2020•随州)2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p(元/只)和销量q(只)与第x天的关系如下表:物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q(只)与第x天的关系为q=﹣2x2+80x﹣200 (6≤x≤30,且x为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出该药店该月前5天的销售价格p与x和销量q与x之间的函数关系式;(2)求该药店该月销售该型号口罩获得的利润W(元)与x的函数关系式,并判断第几天的利润最大;(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m倍的罚款,若罚款金额不低于2000元,则m的取值范围为   .4.(2020•荆州)如图1,在平面直角坐标系中,A(﹣2,﹣1),B(3,﹣1),以O为圆心,OA的长为半径的半圆O交AO延长线于C,连接AB,BC,过O作ED∥BC分别交AB和半圆O于E,D,连接OB,CD.(1)求证:BC是半圆O的切线;(2)试判断四边形OBCD的形状,并说明理由;(3)如图2,若抛物线经过点D且顶点为E.①求此抛物线的解析式;②点P是此抛物线对称轴上的一个动点,以E,D,P为顶点的三角形与△OAB相似,问抛物线上是否存在一点Q.使S△EPQ=S△OAB?若存在,请直接写出Q点的横坐标;若不存在,说明理由.5.(2020•鄂州)如图,抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左边),与y轴交于点C.直线y=x﹣2经过B、C两点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,过点P且垂直于x轴的直线与直线BC及x轴分别交于点D、M.PN⊥BC,垂足为N.设M(m,0).①点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外).请直接写出符合条件的m的值;②当点P在直线BC下方的抛物线上运动时,是否存在一点P,使△PNC与△AOC相似.若存在,求出点P的坐标;若不存在,请说明理由.6.(2020•黄冈)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).(1)请求出日获利w与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.7.(2020•恩施州)如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.8.(2020•黄冈)已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C(0,3).顶点为点D.(1)求抛物线的解析式;(2)若过点C的直线交线段AB于点E,且S△ACE:S△CEB=3:5,求直线CE的解析式;(3)若点P在抛物线上,点Q在x轴上,当以点D,C,P,Q为顶点的四边形是平行四边形时,求点P的坐标;(4)已知点H(0,),G(2,0),在抛物线对称轴上找一点F,使HF+AF的值最小.此时,在抛物线上是否存在一点K,使KF+KG的值最小?若存在,求出点K的坐标;若不存在,请说明理由.9.(2020•十堰)已知抛物线y=ax2﹣2ax+c过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出D点的坐标;(2)如图1,E为线段BC上方的抛物线上一点,EF⊥BC,垂足为F,EM⊥x轴,垂足为M,交BC于点G.当BG=CF时,求△EFG的面积;(3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.10.(2020•十堰)某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x天(x为整数)的生产成本为m(元/台),m与x的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为   ,x的取值范围为   ;(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.11.(2020•湖北)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.12.(2020•荆门)2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系式为p=,销售量y(千克)与x之间的关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)13.(2020•荆门)如图,抛物线L:y=x2﹣x﹣3与x轴正半轴交于点A,与y轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB于点D,求PD+BD的最大值,并求出此时点P的坐标;(3)如图2,将抛物线L:y=x2﹣x﹣3向右平移得到抛物线L',直线AB与抛物线L'交于M,N两点,若点A是线段MN的中点,求抛物线L'的解析式.14.(2020•武汉)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).15.(2020•咸宁)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?16.(2020•鄂州)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元/件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(1≤m≤6),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.17.(2020•孝感)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A   ,B   ,C   ,D   ;(2)如图1,直线DC交x轴于点E,若tan∠AED=,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.18.(2020•武汉)将抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,再将抛物线C1向左平移2个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),点A在抛物线C1(对称轴l右侧)上,点B在对称轴l上,△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=﹣x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.19.(2020•襄阳)如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围. 参考答案1.解:(1)由题意:,解得,∴抛物线的解析式为y=﹣x2+x+1,令y=0,可得x2﹣3x﹣4=0,解得x=﹣1或4,∴A(﹣1,0),令y=0,得到x=1,∴C(0,1),∴OA=OC=1,∴∠CAO=45°.(2)如图1中,过点C作CE⊥OA于E,过点D作DF⊥AB于F.∵∠NEM=∠DFM=∠NMD=90°,∴∠NME+∠DMF=90°,∠DMF+∠MDF=90°,∴∠NME=∠MDF,∵NM=DM,∴△MEN≌△DFM(AAS),∴NE=MF,EM=DF,∵∠CAO=45°,AN=t,AM=3t,∴AE=EN=t,∴EM=AM﹣AE=2t,∴DF=2t,MF=t,OF=4t﹣1,∴D(4t﹣1,2t),∴﹣(4t﹣1)2+(4t﹣1)+1=2t,∵t>0,故可以解得t=,经检验,t=时,M,N均没有达到终点,符合题意,∴D(2,).(3)如图3﹣1中,当点Q在点C的下方,点P在y的右侧,∠QCP=∠MDB时,取E(,0),连接EC,过点E作EG⊥EC交PC于G,∵M(,0),D(2,),B(4,0)∴FM=2﹣=,DM=,BM=,BD=,∴DF=2MF,∵OC=2OE,∴tan∠OCE=tan∠MDF=,∴∠OCE=∠MDF,∴∠OCP=∠MDB,∴∠ECG=∠FDB,∴tan∠ECG=tan∠FDB=,∵EC=,∴EG=,可得G(,),∴直线CP的解析式为y=﹣x+1,由,解得或,∴P(,),C(0,1),∴PC=,当=或=时,△QCP与△MDB相似,可得CQ=或,∴Q(0,﹣)或(0,﹣).如图3﹣2中,当点Q在点C的下方,点P在y的右侧,∠QCP=∠DMB时,设PC交x轴于k.∵tan∠OCK=tan∠DMB=2,∴OK=2OC=2,∴点K与F重合,∴直线PC的解析式为y=﹣x+1,由,解得或,∴P(5,﹣),∴PC=,当=或=时,△QCP与△MDB相似,可得CQ=或,∴Q(0,﹣)或(0,﹣).当点Q在点C的下方,点P在y的右侧,∠QCP=∠DBM时,同法可得P(,﹣),Q(0,﹣)或(0,),当点Q在点C上方,∠QCP=∠DMB时,同法可得P(1,),Q(0,)或(0,),当点Q在点C上方,∠QCP=∠MDB时,同法可得P(,),Q(0,)或(0,),当点Q在点C下方,点P在y轴的左侧时,∠QCP=∠DBM时,同法可得P(﹣,﹣),Q(0,﹣)或(0,﹣).2.解:(1)把A(﹣3.1)代入y=﹣x2+kx﹣2k,得﹣9﹣3k﹣2k=1.解得k=﹣2,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)如图1,设C(t,﹣t2﹣2t+4),则E(t,﹣﹣t+2),设直线AB的解析式为y=kx+b,把A(﹣3,1),(0,4)代入得到,,解得,∴直线AB的解析式为y=x+4,∵E(t,﹣﹣t+2)在直线AB上,∴﹣﹣t+2=t+4,解得t1=t2=﹣2,∴C(﹣2,4).(3)由y=﹣x2+kx﹣2k=k(x﹣2)﹣x2,当x﹣2=0时,x=2,y=﹣4,∴无论k取何值,抛物线都经过定点H(2,﹣4),二次函数的顶点N(,﹣2k),①如图2中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G,若>2时,则k>4,∵M(2﹣,0),H(2,﹣4),∴MI=,HI=4,∴tan∠MHI==,∴∠MHI=30°,∵∠MHN=60°,∴∠NHI=30°,即∠GNH=30°,由图可知,tan∠GNH===,解得k=4+2或4(不合题意舍弃).②如图3中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G.若<2,则k<4,同理可得,∠MHI=30°,∵∠MHN=60°,∴NH⊥HI,即﹣2k═﹣4,解得k=4(不符合题意舍弃).③若=2,则N,H重合,不符合题意舍弃,综上所述,抛物线的解析式为y=﹣x2+(4+2)x﹣(8+4).3.解:(1)根据表格数据可知:前5天的某型号口罩销售价格p(元/只)和销量q(只)与第x天的关系为:p=x+1,1≤x≤5且x为整数;q=5x+65,1≤x≤5且x为整数;(2)当1≤x≤5且x为整数时,W=(x+1﹣0.5)(5x+65)=5x2+x+;当6≤x≤30且x为整数时,W=(1﹣0.5)(﹣2x2+80x﹣200)=﹣x2+40x﹣100.即有W=,当1≤x≤5且x为整数时,售价,销量均随x的增大而增大,故当x=5时,W有最大值为:495元;当6≤x≤30且x为整数时,W═﹣x2+40x﹣100=﹣(x﹣20)2+300,故当x=20时,W有最大值为:300元;由495>300,可知:第5天时利润最大为495元.(3)根据题意可知:获得的正常利润之外的非法所得部分为:(2﹣1)×70+(3﹣1)×75+(4﹣1)×80+(5﹣1)×85+(6﹣1)×90=1250(元),∴1250m≥2000,解得m≥.则m的取值范围为m≥.故答案为:m≥.4.(1)证明:如图1,设AB与y轴交于M,∵A(﹣2,﹣1),B(3,﹣1),∴AB∥x轴,且AM=2,OM=1,AB=5,∴OA=OC=,∵DE∥BC,O是AC的中点,∴OE是△ABC的中位线,∴AE=AB,BC=2OE,∴E(,﹣1),∴EM=,∴OE===,∴BC=2OE=,在△ABC中,∵=25,AB2=52=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∴BC⊥AC,∵AC为半圆O的直径,∴BC是半圆O的切线;(2)解:四边形OBCD是平行四边形,理由是:如图1,由(1)得:BC=OD=OA=,∵OD∥BC,∴四边形OBCD是平行四边形;(3)解:①如图2,由(1)知:OD=OA=,E是AB的中点,且E(,﹣1),OE=,过D作DN⊥y轴于N,则DN∥EM,∴△ODN∽△OEM,∴,即,∴ON=2,DN=1,∴D(﹣1,2),设此抛物线的解析式为:y=a(x﹣)2﹣1,把D(﹣1,2)代入得:2=a(﹣1﹣)2﹣1,解得:a=,∴此抛物线的解析式为:y=(x﹣)2﹣1,即y=;②存在,过D作DG⊥EP于G,设Q的横坐标为x,∵DG=1+=,EG=2+1=3,∴DE===,tan∠DEG==,∵tan∠OAM=,且∠DEG和∠OAM都是锐角,∴∠DEG=∠OAM,如图3,当△EPD∽△AOB时,,即,∴EP=,∵S△AOB==,∵S△EPQ=S△OAB,∴=,即,解得:x=或﹣;如图4,当△OAB∽△DEP时,,即,∴EP=,同理得:,解得:x=或﹣;综上,存在符合条件的点Q,Q点的横坐标为或﹣或或﹣.5.解:(1)针对于直线y=x﹣2,令x=0,则y=﹣2,∴C(0,﹣2),令y=0,则0=x﹣2,∴x=4,∴B(4,0),将点B,C坐标代入抛物线y=x2+bx+c中,得,∴,∴抛物线的解析式为y=x2﹣x﹣2;(2)①∵PM⊥x轴,M(m,0),∴P(m,m2﹣m﹣2),D(m,m﹣2),∵P、D、M三点中恰有一点是其它两点所连线段的中点,∴Ⅰ、当点D是PM的中点时,∴Ⅰ、当点D是PM的中点时,(0+m2﹣m﹣2)=m﹣2,∴m=1或m=4(此时点D,M,P三点重合,舍去),Ⅱ、当点P是DM的中点时,(0+m﹣2)=m2﹣m﹣2,∴m=﹣或m=4(此时点D,M,P三点重合,舍去),Ⅲ、当点M是DP的中点时,(m2﹣m﹣2+m﹣2)=0,∴m=﹣2或m=4(此时点D,M,P三点重合,舍去),即满足条件的m的值为﹣或1或﹣2;②由(1)知,抛物线的解析式为y=x2﹣x﹣2,令y=0,则0=x2﹣x﹣2,∴x=﹣1或x=4,∴点A(﹣1,0),∴OA=1,∵B(4,0),C(0,﹣2),∴OB=4,OC=2,∴,∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠OAC=∠OCB,∠ACO=∠OBC,∵△PNC与△AOC相似,∴Ⅰ、当△PNC∽△AOC,∴∠PCN=∠ACO,∴∠PCN=∠OBC,∴CP∥OB,∴点P的纵坐标为﹣2,∴m2﹣m﹣2=﹣2,∴m=0(舍)或m=3,∴P(3,﹣2);Ⅱ、当△PNC∽△COA时,∴∠PCN=∠CAO,∴∠OCB=∠PCD,∵PD∥OC,∴∠OCB=∠CDP,∴∠PCD=∠PDC,∴PC=PD,由①知,P(m,m2﹣m﹣2),D(m,m﹣2),∵C(0,﹣2),∴PD=2m﹣m2,PC==,∴2m﹣m2=,∴m=或m=0(舍),∴P(,﹣),即满足条件的点P的坐标为(3,﹣2)或(,﹣).6.解:(1)当y≥4000,即﹣100x+5000≥4000,∴x≤10,∴当6≤x≤10时,w=(x﹣6+1)(﹣100x+5000)﹣2000=﹣100x2+5500x﹣27000,当10<x≤30时,w=(x﹣6)(﹣100x+5000)﹣2000=﹣100x2+5600x﹣32000,综上所述:w=;(2)当6≤x≤10时,w=﹣100x2+5500x﹣27000=﹣100(x﹣)2+48625,∵a=﹣100<0,对称轴为x=,∴当6≤x≤10时,y随x的增大而增大,即当x=10时,w最大值=18000元,当10<x≤30时,w=﹣100x2+5600x﹣32000=﹣100(x﹣28)2+46400,∵a=﹣100<0,对称轴为x=28,∴当x=28时,w有最大值为46400元,∵46400>18000,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为46400元;(3)∵40000>18000,∴10<x≤30,∴w=﹣100x2+5600x﹣32000,当w=40000元时,40000=﹣100x2+5600x﹣32000,∴x1=20,x2=36,∴当20≤x≤36时,w≥40000,又∵10<x≤30,∴20≤x≤30,此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,∴对称轴为直线x=﹣=28+a,∵a<4,∴28+a<30,∴当x=28+a时,日获利的最大值为42100元∴(28+a﹣6﹣a)[﹣100×(28+a)+5000]﹣2000=42100,∴a1=2,a2=86,∵a<4,∴a=2.7.解:(1)∵点C(6,0)在抛物线上,∴,得到6b+c=9,又∵对称轴为x=2,∴,解得b=1,∴c=3,∴二次函数的解析式为;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为,对称轴为x=2,C(6,0)∴点A(2,0),顶点B(2,4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45°;∵将△MPC逆时针旋转90°得到△MEF,∴FM=CM,∠2=∠1=45°,设点M的坐标为(m,0),∴点F(m,6﹣m),又∵∠2=45°,∴直线EF与x轴的夹角为45°,∴设直线EF的解析式为y=x+b,把点F(m,6﹣m)代入得:6﹣m=m+b,解得:b=6﹣2m,直线EF的解析式为y=x+6﹣2m,∵直线EF与抛物线只有一个交点,∴,整理得:,∴△=b2﹣4ac=0,解得m=,点M的坐标为(,0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45°,因此直线EF与抛物线不可能只有一个交点.综上,点M的坐标为(,0).(3)①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵,由(2)知∠BCA=45°,∴PG=GC=1,∴点G(5,0),设点M的坐标为(m,0),∵将△MPC逆时针旋转90°得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90°,∴∠HEM=∠GMP,在△EHM和△MGP中,,∴△EHM≌△MGP(AAS),∴EH=MG=5﹣m,HM=PG=1,∴点H(m﹣1,0),∴点E的坐标为(m﹣1,5﹣m);∴EA==,又∵D为线段BC的中点,B(2,4),C(6,0),∴点D(4,2),∴ED==,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m﹣1,5﹣m),因此EA=ED.②当点E在(1)所求的抛物线上时,把E(m﹣1,5﹣m)代入,整理得:m2﹣10m+13=0,解得:m=或m=,∴CM=或CM=.8.解:(1)因为抛物线经过A(﹣1,0),B(3,0),∴可以假设抛物线的解析式为y=a(x+1)(x﹣3),把C(0,3)代入,可得a=﹣1,∴抛物线的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)如图1中,连接AC,BC.∵S△ACE:S△CEB=3:5,∴AE:EB=3:5,∵AB=4,∴AE=4×=,∴OE=0.5,设直线CE的解析式为y=kx+b,则有,解得,∴直线EC的解析式为y=﹣6x+3.(3)由题意C(0,3),D(1,4).当四边形P1Q1CD,四边形P2Q2CD是平行四边形时,点P的纵坐标为1,当y=1时,﹣x2+2x+3=1,解得x=1±,∴P1(1+,1),P2(1﹣,1),当四边形P3Q3DC,四边形P4Q4DC是平行四边形时,点P的纵坐标为﹣1,当y=﹣1时,﹣x2+2x+3=﹣1,解得x=1±,∴P1(1+,﹣1),P2(1﹣,﹣1),综上所述,满足条件的点P的坐标为(1+,1)或(1﹣,1)或(1﹣,﹣1)或(1+,﹣1).(4)如图3中,连接BH交对称轴于F,连接AF,此时AF+FH的值最小.∵H(0,),B(3,0),∴直线BH的解析式为y=﹣x+,∵x=1时,y=,∴F(1,),设K(x,y),作直线y=,过点K作KM⊥直线y=于M.∵KF=,y=﹣x2+2x+3=﹣(x﹣1)2+4,∴(x﹣1)2=4﹣y,∴KF===|y﹣|,∵KM=|y﹣|,∴KF=KM,∴KG+KF=KG+KM,根据垂线段最短可知,当G,K,M共线,且垂直直线y=时,GK+KM的值最小,最小值为,此时K(2,3).9.(1)把点A(﹣1,0),C(0,3)代入y=ax2﹣2ax+c中,,解得,∴y=﹣x2+2x+3,当时,y=4,∴D(1,4);(2)如图1,∵抛物线y=﹣x2+2x+3,令y=0,∴x=﹣1,或x=3,∴B(3,0).设BC的解析式为y=kx+b(k≠0),将点C(0,3),B(3,0)代入,得,解得,∴y=﹣x+3.∵EF⊥CB.设直线EF的解析式为y=x+b,设点E的坐标为(m,﹣m2+2m+3),将点E坐标代入y=x+b中,得b=﹣m2+m+3,∴y=x﹣m2+m+3,联立得.∴.∴.把x=m代入y=﹣x+3,得y=﹣m+3,∴G(m,﹣m+3).∵BG=CF.∴BG2=CF2,即.解得m=2或m=﹣3.∵点E是BC上方抛物线上的点,∴m=﹣3,(舍去).∴点E(2,3),F(1,2),G(2,1),,,∴;(3)如图2,过点A作AN⊥HB于N,∵点D(1,4),B(3,0),∴yDB=﹣2x+6.∵点A(﹣1,0),点C(0,3),∴yAC=3x+3,联立得,∴,∴.设,把(﹣1,0)代入,得b=,∴,联立得,∴,∴,∴=,,∴AN=HN.∴∠H=45°.设点P(n,﹣n2+2n+3).过点P作PR⊥x轴于点R,在x轴上作点S使得RS=PR,∴∠RSP=45°且点S的坐标为(﹣n2+3n+3,0).若∠OPB=∠AHB=45°在△OPS和△OPB中,∠POS=∠POB,∠OSP=∠OPB,∴△OPS∽△OBP.∴.∴OP2=OB•OS.∴n2+(n+1)2(n﹣3)2=3•(﹣n2+3n+3).∴n=0或或n=3(舍去).∴P1(0,3),,.10.解:(1)根据题意,得y与x的解析式为:y=22+2(x﹣1)=2x+20(1≤x≤12),故答案为:y=2x+20,1≤x≤12;(2)设当天的销售利润为w元,则当1≤x≤6时,w=(1200﹣800)(2x+20)=800x+8000,∵800>0,∴w随x的增大而增大,∴当x=6时,w最大值=800×6+8000=12800.当6<x≤12时,设m=kx+b,将(6,800)和(10,1000)代入得:,解得:,∴m与x的关系式为:m=50x+500,∴w=[1200﹣(50x+500)]×(2x+20)=﹣100x2+400x+14000=﹣100(x﹣2)2+14400.∵此时图象开口向下,在对称轴右侧,w随x的增大而减小,天数x为整数,∴当x=7时,w有最大值,为11900元,∵12800>11900,∴当x=6时,w最大,且w最大值=12800元,答:该厂第6天获得的利润最大,最大利润是12800元.(3)由(2)可得,1≤x≤6时,800x+8000<10800,解得:x<3.5则第1﹣3天当天利润低于10800元,当6<x≤12时,﹣100(x﹣2)2+14400<10800,解得x<﹣4(舍去),或x>8,∴第9﹣12天当天利润低于10800元,故当天销售利润低于10800元的天数有7天.11.解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∴动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.12.解:(1)当0<x≤20时,设y与x的函数关系式为y=ax+b,,解得,,即当0<x≤20时,y与x的函数关系式为y=﹣2x+80,当20<x≤30时,设y与x的函数关系式为y=mx+n,,解得,,即当20<x≤30时,y与x的函数关系式为y=4x﹣40,由上可得,y与x的函数关系式为y=;(2)设当月第x天的销售额为w元,当0<x≤20时,w=(x+4)×(﹣2x+80)=(x﹣15)2+500,∴当x=15时,w取得最大值,此时w=500,当20<x≤30时,w=(x+12)×(4x﹣40)=(x﹣35)2+500,∴当x=30时,w取得最大值,此时w=480,由上可得,当x=15时,w取得最大值,此时w=500,答:当月第15天,该农产品的销售额最大,最大销售额是500元.13.解:(1)∵抛物线L:y=x2﹣x﹣3与x轴正半轴交于点A,与y轴交于点B,∴点A(4,0),点B(0,﹣3),设直线AB解析式为:y=kx﹣3,∴0=4k﹣3,∴k=,∴直线AB解析式为:y=x﹣3,∵y=x2﹣x﹣3=(x﹣)2﹣,∴抛物线顶点坐标为(,﹣);(2)∵点A(4,0),点B(0,﹣3),∴OA=4,OB=3,∴AB===5,设点P(x,x2﹣x﹣3)(<x<4),则点D(x,x﹣3),∴BD==x,PD=(x﹣3)﹣(x2﹣x﹣3)=﹣x2+2x,∴PD+BD=﹣x2+2x+x=﹣(x﹣)2+,∵<x<4,﹣<0,∴当x=时,PD+BD有最大值为,此时,点P(,﹣);(3)设平移后的抛物线L'解析式为y=(x﹣m)2﹣,联立方程组可得:,∴x2﹣2(m+)x+m2﹣=0,设点M(x1,y1),点N(x2,y2),∵直线AB与抛物线L'交于M,N两点,∴x1,x2是方程x2﹣2(m+)x+m2﹣=0的两根,∴x1+x2=2(m+),∵点A是MN的中点,∴x1+x2=8,∴2(m+)=8,∴m=,∴平移后的抛物线L'解析式为y=(x﹣)2﹣=x2﹣x+.14.解:(1)由题意得:,解得:.∴a=1,b=30;(2)由(1)得:y=x2+30x,设A,B两城生产这批产品的总成本为w,则w=x2+30x+70(100﹣x)=x2﹣40x+7000,=(x﹣20)2+6600,∵a=1>0,由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20=80.答:A城生产20件,B城生产80件;(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,由题意得:,解得10≤n≤20,∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),整理得:P=(m﹣2)n+130,根据一次函数的性质分以下两种情况:①当0<m≤2,10≤n≤20时,P随n的增大而减小,则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;②当m>2,10≤n≤20时,P随n的增大而增大,则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m>2时,A,B两城总运费的和为(10m+110)万元.15.解:(1)直线y=﹣x+2与x轴交于点A,与y轴交于点B,则点A、B的坐标分别为(4,0)、(0,2),将点B、C的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+2①;(2)如图1,作点B关于x轴的对称点B′(0,﹣2),连接AB′交抛物线于点P(P′),则∠PAO=∠BAO,设直线AB'的解析式为y=kx+m,∴,∴,直线AB′的表达式为:y=x﹣2②,联立①②并解得:x=3或﹣2,故点P的坐标为(3,﹣)或(﹣2,﹣3),当点P与B,C重合时,也满足条件,此时P(0,2)或(,),综上所述,满足条件的点P的坐标为(3,﹣)或(﹣2,﹣3)或(0,2)或(,).(3)①过点C作CH⊥x轴于点H,∵∠MNC=90°,∴∠MNO+∠CNH=90°,又∵∠CNH+∠NCH=90°,∴∠MNO=∠NCH,∴tan∠MNO=tan∠NCH,即,即,解得:m=﹣n2+n;②m=﹣n2+n,∵<0,故m有最大值,当n=时,m的最大值为,而m>0,故0<m<时,符合条件的N点的个数有2个.16.解:(1)设y与x的函数关系式为:y=kx+b(k≠0),把x=4,y=10000和x=5,y=9500代入得,,解得,,∴y=﹣500x+12000;(2)根据“在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,”得,,解得,3≤x≤12,设利润为w元,根据题意得,w=(x﹣3)y=(x﹣3)(﹣500x+12000)=﹣500x2+13500x﹣36000=﹣500(x﹣13.5)2+55125,∵﹣500<0,∴当x<13.5时,w随x的增大而增大,∵3≤x≤12,∴当x=12时,w取最大值为:﹣500×(12﹣13.5)2+55125=54000,答:这一周该商场销售这种商品获得的最大利润为54000元,售价为12元;(3)根据题意得,w=(x﹣3﹣m)(﹣500x+12000)=﹣500x2+(13500+500m)x﹣36000﹣12000m,∴对称轴为x=﹣=13.5+0.5m,∵﹣500<0,∴当x≤13.5+0.5m时,w随x的增大而增大,∵该商场这种商品售价不大于15元/件时,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.∴15≤13.5+0.5m,解得,m≥3,∵1≤m≤6,∴3≤m≤6.17.解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x=﹣2,故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);故答案为:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);答案的第(2)小题,tan∠AED=OC/OE=(4a﹣6)/(3/a﹣2)应改在此处添加绝对值符号,或者将4a﹣6改为6﹣4a(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a﹣6),函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,令y=0,则x=﹣2,故点E(﹣2,0),则OE=﹣2,tan∠AED===,解得:a=,故点C、E的坐标分别为(0,﹣)、(,0),则CE==;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y=x2+x﹣,故点A、C的坐标分别为(﹣5,0)、(0,﹣),则点N(0,﹣),由点A、N的坐标得,直线AN的表达式为:y=﹣x﹣;设点P(t,t2+t﹣),则点F(t,﹣t﹣);则PF=﹣t2﹣3t+,由点E(,0)、C的坐标得,直线CE的表达式为:y=x﹣,则点J(t,t﹣),故FJ=﹣t+,∵FH⊥DE,JF∥y轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故,则FH=,f=PF+FH=﹣t2﹣3t++(﹣t+1)=﹣t2﹣4t+;②f=﹣t2﹣4t+=﹣(t+3)2+(﹣5<t≤m且m<0);∴当﹣5<m<﹣3时,fmax=﹣m2﹣4m+;当﹣3≤m<0时,fmax=.18.解:(1)∵抛物线C:y=(x﹣2)2向下平移6个单位长度得到抛物线C1,∴C1:y=(x﹣2)2﹣6,∵将抛物线C1向左平移2个单位长度得到抛物线C2.∴C2:y=(x﹣2+2)2﹣6,即y=x2﹣6;(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D,如图1,设A(a,(a﹣2)2﹣6),则BD=a﹣2,AC=|(a﹣2)2﹣6|,∵∠BAO=∠ACO=90°,∴∠BAD+∠OAC=∠OAC+∠AOC=90°,∴∠BAD=∠AOC,∵AB=OA,∠ADB=∠OCA,∴△ABD≌△OAC(AAS),∴BD=AC,∴a﹣2=|(a﹣2)2﹣6|,解得,a=4,或a=﹣1(舍),或a=0(舍),或a=5,∴A(4,﹣2)或(5,3);(3)把y=kx代入y=x2﹣6中得,x2﹣kx﹣6=0,∴xE+xF=k,∴M(),把y=﹣x代入y=x2﹣6中得,x2+x﹣6=0,∴,∴N(,),设MN的解析式为y=mx+n(m≠0),则,解得,,∴直线MN的解析式为:,当x=0时,y=2,∴直线MN:经过定点(0,2),即直线MN经过一个定点.19.解:(1)令x=0,得y=﹣x+2=2,∴A(0,2),令y=0,得y=﹣x+2=0,解得,x=4,∴C(4,0),把A、C两点代入y=﹣x2+bx+c得,,解得,∴抛物线的解析式为,令y=0,得=0,解得,x=4,或x=﹣2,∴B(﹣2,0);(2)过M点作MN⊥x轴,与AC交于点N,如图1,设M(a,),则N(a,),∴=,∵,∴S四边形ABCM=S△ACM+S△ABC=,∴当a=2时,四边形ABCM面积最大,其最大值为8,此时M的坐标为(2,2);(3)∵将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,如图2,∴PO′=PO=m,O′A′=OA=2,∴O′(m,m),A′(m+2,m),当A′(m+2,m)在抛物线上时,有,解得,m=﹣3,当点O′(m,m)在抛物线上时,有,解得,m=﹣4或2,∴当﹣3﹣≤m≤﹣4或﹣3+≤m≤2时,线段O′A′与抛物线只有一个公共点. 第x天12345销售价格p(元/只)23456销量q(只)7075808590x(元/件)456y(件)1000095009000

    相关课件

    2024河南中考数学一轮知识点复习专题 计算能力保分专练 课件:

    这是一份2024河南中考数学一轮知识点复习专题 计算能力保分专练 课件,共60页。PPT课件主要包含了先化简再求值,甲同学,乙同学,解方程组,解分式方程,解方程,配方法,解不等式,解不等式组等内容,欢迎下载使用。

    中考数学一轮复习课件 计算题专练:

    这是一份中考数学一轮复习课件 计算题专练,共26页。PPT课件主要包含了实数的运算等内容,欢迎下载使用。

    2022年中考数学人教版一轮复习课件:六、解答题专练——解方程:

    这是一份2022年中考数学人教版一轮复习课件:六、解答题专练——解方程,共18页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map