开学活动
搜索
    上传资料 赚现金

    专题09 概率与统计-2022年高考真题和模拟题数学分项汇编(解析版)+(原卷版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题09 概率与统计-2022年高考真题和模拟题数学分项汇编(原卷版).docx
    • 解析
      专题09 概率与统计-2022年高考真题和模拟题数学分项汇编(解析版).docx
    专题09 概率与统计-2022年高考真题和模拟题数学分项汇编(原卷版)第1页
    专题09 概率与统计-2022年高考真题和模拟题数学分项汇编(原卷版)第2页
    专题09 概率与统计-2022年高考真题和模拟题数学分项汇编(原卷版)第3页
    专题09 概率与统计-2022年高考真题和模拟题数学分项汇编(解析版)第1页
    专题09 概率与统计-2022年高考真题和模拟题数学分项汇编(解析版)第2页
    专题09 概率与统计-2022年高考真题和模拟题数学分项汇编(解析版)第3页
    还剩10页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题09 概率与统计-2022年高考真题和模拟题数学分项汇编(解析版)+(原卷版)

    展开

    这是一份专题09 概率与统计-2022年高考真题和模拟题数学分项汇编(解析版)+(原卷版),文件包含专题09概率与统计-2022年高考真题和模拟题数学分项汇编解析版docx、专题09概率与统计-2022年高考真题和模拟题数学分项汇编原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
    专题09  概率与统计 1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则(       A.讲座前问卷答题的正确率的中位数小于B.讲座后问卷答题的正确率的平均数大于C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差2.【2022年全国甲卷】从分别写有1234566张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为(       A B C D3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是(       A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.64.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则(       Ap与该棋手和甲、乙、丙的比赛次序无关 B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大 D.该棋手在第二盘与丙比赛,p最大5.【2022年新高考1卷】287个整数中随机取2个不同的数,则这2个数互质的概率为(       A B C D6.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________7.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________8.【2022年新高考2卷】已知随机变量X服从正态分布,且,则____________9.【2022年浙江】现有7张卡片,分别写上数字1223456.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为,则___________________10.【2022年全国甲卷】甲、乙两城之间的长途客车均由AB两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表: 准点班次数未准点班次数A24020B21030 (1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:0.1000.0500.0102.7063.8416.635 11.【2022年全国甲卷】甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.50.40.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)X表示乙学校的总得分,求X的分布列与期望.12.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:样本号i12345678910总和根部横截面积0.040.060.040.080.080.050.050.070.070.060.6材积量0.250.400.220.540.510.340.360.460.420.403.9 并计算得(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数13.【2022年新高考1卷】一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据: 不够良好良好病例组4060对照组1090 (1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件选到的人卫生习惯不够良好B表示事件选到的人患有该疾病的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R)证明:)利用该调查数据,给出的估计值,并利用()的结果给出R的估计值.0.0500.0100.001k3.8416.63510.828 14.【2022年新高考2卷】在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间的概率;(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001.15.【2022年北京】在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.809.709.559.549.489.429.409359.309.25乙:9.789.569.519.369.329.23丙:9.859.659.209.16假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望EX);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)1.(2022·河南省杞县高中模拟预测(理))某市有11名选手参加了田径男子100米赛的选拔比赛,前5名可以参加省举办的田径赛,如果各个选手的选拔赛成绩均不相同,选手小强已经知道了自己的成绩,为了判断自己能否参加省举办的田径赛,他还需要知道这11名选手成绩的(       A.平均数 B.中位数 C.众数 D.方差2.(2022·黑龙江·大庆实验中学模拟预测(理))2021530日清晨501分,天舟二号货运飞船在成功发射约8小时后,与中国空间站天和核心舱完成自主快速交接.如果下次执行空间站的任务由3名航天员承担,需要在3名女性航天员和3名男性航天员中选择,则选出的3名航天员中既有男性航天员又有女性航天员的概率为(       A B C D3.(2022·全国·模拟预测(文))如图是一组实验数据的散点图,拟合方程,令,则关于的回归直线过点,则当时,的取值范围是(       A B C D4.(2022·辽宁实验中学模拟预测)某国计划采购疫苗,现在成熟的疫苗中,三种来自中国,一种来自美国,一种来自英国,一种由美国和德国共同研发,从这6种疫苗中随机采购三种,若采购每种疫苗都是等可能的,则买到中国疫苗的概率为(       A B C D5.(2022·四川省泸县第二中学模拟预测(理))食物链亦称营养链,是指生态系统中各种生物为维持其本身的生命活动,必须以其他生物为食物的这种由食物联结起来的链锁关系.如图为某个生态环境中的食物链,若从鹰、麻雀、兔、田鼠以及蝗虫中任意选取两种,则这两种生物不能构成摄食关系的概率(       A B C D6.(2022·山东潍坊·模拟预测)Poisson分布是统计学里常见的离散型概率分布,由法国数学家西莫恩·德尼·泊松首次提出,Poisson分布的概率分布列为,其中为自然对数的底数,Poisson分布的均值.当二项分布的n很大p很小时,Poisson分布可作为二项分布的近似.假设每个大肠杆菌基因组含有10000个核苷酸对,采用紫外线照射大肠杆菌时,每个核苷酸对产生嘧啶二体的概率均为0.0003,已知该菌株基因组有一个嘧啶二体就致死,则致死率是(       A B C D7.(2022·河南安阳·模拟预测(理))某房产销售公司有800名销售人员,为了了解销售人员上一个季度的房屋销量,公司随机选取了部分销售人员对其房屋销量进行了统计,得到上一季度销售人员的房屋销量,则全公司上一季度至少完成22套房屋销售的人员大概有(       附:若随机变量X服从正态分布,则A254 B127 C18 D368.(2022·河南·模拟预测)某公司生产的一种产品按照质量由高到低分为ABCD四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息:下列推断合理的是(       A.改进生产工艺后,A级产品的数量没有变化B.改进生产工艺后,D级产品的数量减少C.改进生产工艺后,C级产品的数量减少D.改进生产工艺后,B级产品的数量增加了不到一倍9.(2022·河南安阳·模拟预测(文))为推动就业与培养有机联动、人才供需有效对接,促进高校毕业生更加充分更高质量就业,教育部今年首次实施供需对接就业育人项目.现安排甲、乙两所高校与3家用人单位开展项目对接,若每所高校至少对接两家用人单位,则两所高校的选择涉及到全部3家用人单位的概率为(       A B C D10.(2022·江苏·南京师大附中模拟预测)某同学在课外阅读时了解到概率统计中的马尔可夫不等式,该不等式描述的是对非负的随机变量和任意的正数,都有,其中是关于数学期望的表达式.由于记忆模糊,该同学只能确定的具体形式是下列四个选项中的某一种.请你根据自己的理解,确定该形式为(       A B C D11.(2022·吉林·三模(理))为了切实维护居民合法权益,提高居民识骗防骗能力,守好居民的钱袋子,某社区开展全民反诈在行动——反诈骗知识竞赛活动,现从参加该活动的居民中随机抽取了100名,统计出他们竞赛成绩分布如下:成绩(分)人数242240284 (1)求抽取的100名居民竞赛成绩的平均分和方差(同一组中数据用该组区间的中点值为代表);(2)以频率估计概率,发现该社区参赛居民竞赛成绩X近似地服从正态分布,其中近似为样本成绩平均分近似为样本成缋方差,若,参赛居民可获得参赛纪念证书;若,参赛居民可获得反诈先锋证书若该社区有3000名居民参加本次竞赛活动,试估计获得参赛纪念证书的居民人数(结果保留整数);试判断竞赛成绩为96分的居民能否获得反诈先锋证书附:若,则12.(2022·贵州·贵阳一中模拟预测(文))十四五规划纲要提出,全面推动长江经济带发展,协同推动生态环境保护和经济发展长江水资源约占全国总量的36%,长江流域河湖水库湿地面积约占全国的20%,珍稀濒危植物占全国的39.7%,淡水鱼类占全国的33%.长江经济带在我国生态文明建设中占据重要位置.长江流域某地区经过治理,生态系统得到很大改善,水生动物数量有所增加.为调查该地区某种水生动物的数量,将其分成面积相近的100个水域,从这些水域中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据其中分别表示第i个样区的水草覆盖面积(单位:公顷)和这种水生动物的数量,并计算得(1)求该地区这种水生动物数量的估计值(这种水生动物数量的估计值等于样区这种水生动物数量的平均数乘以地块数);(2)求样本的相关系数(精确到0.01);(3)根据现有统计资料,各地块间水草覆盖面积差异很大.为提高样本的代表性以获得该地区这种水生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数13.(2022·河南开封·模拟预测(理))大豆是我国重要的农作物,种植历史悠久.某种子实验基地培育出某大豆新品种,为检验其最佳播种日期,在AB两块试验田上进行实验(两地块的土质等情况一致).625日在A试验田播种该品种大豆,710日在B试验田播种该品种大豆.收获大豆时,从中各随机抽取20份(每份1千粒),并测量出每份的质量(单位:克),按照进行分组,得到如下表格: A试验田/3611B试验田/6104 把千粒质量不低于200克的大豆视为籽粒饱满,否则视为籽粒不饱满.(1)判断是否有97.5%的把握认为大豆籽粒饱满与播种日期有关?(2)AB两块实验田中各抽取一份大豆,求抽取的大豆中至少有一份籽粒饱满的概率;(3)用样本估计总体,从A试验田随机抽取100份(每份千粒)大豆,记籽粒饱满的份数为X,求X的数学期望和方差.参考公式:,其中0.150.100.050.0250.0100.0012.0722.7063.8415.0246.63510.828 14.(2022·吉林吉林·模拟预测(文))为了切实维护居民合法权益,提高居民识骗防骗能力,守好居民的钱袋子,某社区开展全民反诈在行动——反诈骗知识竞赛活动,现从参加该活动的居民中随机抽取了100名,统计出他们竞赛成绩分布如下:成绩X人数2a22b28a (1)ab的值,并补全频率分布直方图;(2)估计该社区居民竞赛成绩的平均数和方差(同一组中的数据用该组区间的中点值作代表);(3)以频率估计概率,若,社区获得反诈先进社区称号,若,社区获得反诈先锋社区称号,试判断该社区可获得哪种称号(s为竞赛成绩标准差)?15.(2022·辽宁·大连二十四中模拟预测)某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试.现对测试数据进行分析,得到如图所示的频率分布直方图:(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表);(2)经计算第(1)问中样本标准差的近似值为50,根据大量的测试数据,可以认为这款汽车的单次最大续航里程近似地服从正态分布(用样本平均数和标准差分别作为的近似值),现任取一辆汽车,求它的单次最大续航里程的概率;(参考数据:若随机变量,则(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出玩游戏,送大奖活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上(方格图上依次标有数字0123……20)移动,若遥控车最终停在胜利大本营(第19格),则可获得购车优惠券3万元;若遥控车最终停在微笑大本营(第20格),则没有任何优优惠券.已知硬币出现正、反面的概率都是,遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次:若掷出正面,遥控车向前移动一格(从;若掷出反面,遥控车向前移动两格(从),直到遥控车移到胜利大本营微笑大本营时,游戏结束.设遥控车移到第格的概率为,试证明是等比数列,并求参与游戏一次的顾客获得优惠券全额的期望值(精确到万元).
     

    相关试卷

    【高考真题分项汇编】专题01 集合与常用逻辑用语(原卷+解析卷)高考真题和模拟题数学分项汇编:

    这是一份【高考真题分项汇编】专题01 集合与常用逻辑用语(原卷+解析卷)高考真题和模拟题数学分项汇编,文件包含专题01集合与常用逻辑用语-2022年高考真题和模拟题数学分项汇编原卷版docx、专题01集合与常用逻辑用语-2022年高考真题和模拟题数学分项汇编解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    高中数学高考专题09 概率与统计——2020年高考真题和模拟题文科数学分项汇编(教师版含解析):

    这是一份高中数学高考专题09 概率与统计——2020年高考真题和模拟题文科数学分项汇编(教师版含解析),共25页。

    高中数学高考专题09 概率与统计——2020年高考真题和模拟题文科数学分项汇编(学生版):

    这是一份高中数学高考专题09 概率与统计——2020年高考真题和模拟题文科数学分项汇编(学生版),共14页。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map