专题10 计数原理-2022年高考真题和模拟题数学分项汇编(解析版)+(原卷版)
展开专题10 计数原理
1.【2022年新高考2卷】有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( )
A.12种 B.24种 C.36种 D.48种
2.【2022年北京】若,则( )
A.40 B.41 C. D.
3.【2022年新高考1卷】的展开式中的系数为________________(用数字作答).
4.【2022年浙江】已知多项式,则__________,___________.
1.(2022·湖南·长沙县第一中学模拟预测)展开式中的常数项为( )
A.60 B.64 C.-160 D.240
2.(2022·江苏无锡·模拟预测)二项式的展开式中,含项的二项式系数为( )
A.84 B.56 C.35 D.21
3.(2022·湖南·邵阳市第二中学模拟预测)将名志愿者分配到个不同的社区进行抗疫,每名志愿者只分配到个社区,每个社区至少分配名志愿者,则不同的分配方案共有( )
A.种 B.种 C.种 D.种
4.(2022·吉林·三模(理))对于的展开式,下列说法不正确的是( )
A.有理项共5项 B.二项式系数和为512
C.二项式系数最大的项是第4项和第5项 D.各项系数和为
5.(2022·全国·模拟预测(理))为帮助用人单位培养和招聘更多实用型、复合型和紧缺型人才,促进高校毕业生更高质量就业,教育部于年首次实施供需对接就业育人项目.某市今年计划安排甲、乙、丙所高校与家用人单位开展供需对接,每家用人单位只能对接所高校,且必有高校与用人单位对接.若甲高校对接家用人单位,乙、丙两所高校分别至少对接家用人单位,则不同的对接方案共有( )
A.种 B.种 C.种 D.种
6.(2022·黑龙江·大庆实验中学模拟预测(理))已知,则( )
A.280 B.35 C. D.
7.(2022·江苏·常州高级中学模拟预测)的展开式中的系数为( )
A. B.25 C. D.5
8.(2022·全国·模拟预测)数论领域的四平方和定理最早由欧拉提出,后被拉格朗日等数学家证明.四平方和定理的内容是:任意正整数都可以表示为不超过四个自然数的平方和,例如正整数.设,其中a,b,c,d均为自然数,则满足条件的有序数组的个数是( )
A.28 B.24 C.20 D.16
9.(2022·福建省福州格致中学模拟预测)已知,则关于的展开式,以下命题错误的是( )
A.展开式中系数为负数的项共有3项
B.展开式中系数为正数的项共有4项
C.含的项的系数是
D.各项的系数之和为
10.(2022·辽宁·鞍山一中模拟预测)数列中,,,的值为( )
A.761 B.697 C.518 D.454
11.(2022·湖北·华中师大一附中模拟预测)某地区安排A,B,C,D,E,F六名党员志愿者同志到三个基层社区开展防诈骗宣传活动,每个地区至少安排一人,至多安排三人,且A,B两人安排在同一个社区,C,D两人不安排在同一个社区,则不同的分配方法总数为( )
A.72 B.84 C.90 D.96
12.(2022·内蒙古·海拉尔第二中学模拟预测(理))《数术记遗》是《算经十书》中的一部,相传是汉末徐岳所著.该书记述了我国古代种算法,分别是:积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算和计数.某中学研究性学习小组有甲、乙、丙、丁四人,该小组拟全部收集九宫算、运筹算、了知算、成数算和把头算等种算法的相关资料,要求每人至少收集其中一种,且每种算法只由一个人收集,但甲不收集九宫算和了知算的资料,则不同的分工收集方案共有( )种.
A. B.
C. D.
13.(2022·广东佛山·模拟预测)“五经”是儒家典籍《周易》、《尚书》、《诗经》、《礼记》、《春秋》的合称.为弘扬中国传统文化,某校在周末兴趣活动中开展了“五经”知识讲座,每经排1节,连排5节,则《诗经》、《春秋》分开排的情况有________种.
14.(2022·上海市光明中学模拟预测)已知二项式,则其展开式中的系数为____________.
15.(2022·吉林·三模(理))为了保障疫情期间广大市民基本生活需求,市政府准备了茄子、辣椒、白菜、角瓜、菜花、萝卜、黄瓜、土豆八种蔬菜,并从中任选五种,以“蔬菜包”的形式发给市民.若一个“蔬菜包”中不同时含有土豆和萝卜,且角瓜、黄瓜、辣椒最多只含有两种,则可以组成___________种不同的“蔬菜包”.
16.(2022·湖南·模拟预测)的展开式的中的系数是______.
17.(2022·江苏无锡·模拟预测)甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次,已知甲和乙都没有得到冠军,并且乙不是第5名,则这5个人的名次排列情况共有________种.
18.(2022·山东泰安·模拟预测)古希腊哲学家毕达哥拉斯曾说过:“美的线型和其他一切美的形体都必须有对称形式.”在中华传统文化里,建筑、器物、书法、诗歌、对联、绘画几乎无不讲究对称之美.如图所示的是清代诗人黄柏权的《茶壶回文诗》,其以连环诗的形式展现,20个字绕着茶壶成一圆环,无论顺着读还是逆着读,皆成佳作.数学与生活也有许多奇妙的联系,如2020年02月02日(20200202)被称为世界完全对称日(公历纪年日期中数字左右完全对称的日期).数学上把20200202这样的对称数叫回文数,若两位数的回文数共有9个(11,22,…,99).则所有四位数的回文数中能被3整除的个数是___________.
19.(2022·辽宁沈阳·三模)若,则_______.
20.(2022·浙江·绍兴一中模拟预测)某科室有4名人员,两男两女,参加会议时一排有5个位置,从左到右排,则两女员工不相邻(中间隔空位也叫不相邻),且左侧的男员工前面一定有女员工的排法有_______种(结果用数字表示).
【高考真题分项汇编】专题01 集合与常用逻辑用语(原卷+解析卷)高考真题和模拟题数学分项汇编: 这是一份【高考真题分项汇编】专题01 集合与常用逻辑用语(原卷+解析卷)高考真题和模拟题数学分项汇编,文件包含专题01集合与常用逻辑用语-2022年高考真题和模拟题数学分项汇编原卷版docx、专题01集合与常用逻辑用语-2022年高考真题和模拟题数学分项汇编解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
高中数学高考专题10 计数原理——2020年高考真题和模拟题理科数学分项汇编(学生版): 这是一份高中数学高考专题10 计数原理——2020年高考真题和模拟题理科数学分项汇编(学生版),共4页。
专题10 计数原理-2022年高考真题和模拟题数学分类汇编(解析版): 这是一份专题10 计数原理-2022年高考真题和模拟题数学分类汇编(解析版),共16页。