终身会员
搜索
    上传资料 赚现金
    专题02 函数的概念与基本初等函数Ⅰ-三年(2020-2022)高考数学真题分项汇编(新高考地区专用)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 教师
      专题02 函数的概念与基本初等函数Ⅰ(新高考)(教师版).docx
    • 学生
      专题02 函数的概念与基本初等函数Ⅰ(新高考)(学生版).docx
    专题02 函数的概念与基本初等函数Ⅰ-三年(2020-2022)高考数学真题分项汇编(新高考地区专用)01
    专题02 函数的概念与基本初等函数Ⅰ-三年(2020-2022)高考数学真题分项汇编(新高考地区专用)02
    专题02 函数的概念与基本初等函数Ⅰ-三年(2020-2022)高考数学真题分项汇编(新高考地区专用)03
    专题02 函数的概念与基本初等函数Ⅰ-三年(2020-2022)高考数学真题分项汇编(新高考地区专用)01
    还剩4页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题02 函数的概念与基本初等函数Ⅰ-三年(2020-2022)高考数学真题分项汇编(新高考地区专用)

    展开
    这是一份专题02 函数的概念与基本初等函数Ⅰ-三年(2020-2022)高考数学真题分项汇编(新高考地区专用),文件包含专题02函数的概念与基本初等函数Ⅰ新高考教师版docx、专题02函数的概念与基本初等函数Ⅰ新高考学生版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    专题02  函数的概念与基本初等函数

    12022年新高考2卷】已知函数的定义域为R,且       

    A B C0 D1

    【答案】A

    【分析】根据题意赋值即可知函数的一个周期为,求出函数一个周期中的的值,即可解出.

    【解析】因为,令可得,,所以,令可得,,即,所以函数为偶函数,令得,,即有,从而可知,故,即,所以函数的一个周期为

    因为,所以

    一个周期内的.由于22除以64

    所以

    故选:A
    22021年新高考2卷】已知,则下列判断正确的是(       

    A B C D

    【答案】C

    【分析】对数函数的单调性可比较的大小关系,由此可得出结论.

    【解析】,即.故选:C.
    32021年新高考2卷】已知函数的定义域为为偶函数,为奇函数,则(       

    A B C D

    【答案】B

    【分析】推导出函数是以为周期的周期函数,由已知条件得出,结合已知条件可得出结论.

    【解析】因为函数为偶函数,则,可得

    因为函数为奇函数,则,所以,

    所以,,即

    故函数是以为周期的周期函数,

    因为函数为奇函数,则

    ,其它三个选项未知.故选:B.
    42020年新高考1卷(山东卷)】基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:)的变化规律,指数增长率rR0T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)        

    A1.2 B1.8

    C2.5 D3.5

    【答案】B

    【分析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.

    【解析】因为,所以,所以

    设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,

    ,所以,所以

    所以.故选:B.

    【点睛】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.
    52020年新高考1卷(山东卷)】若定义在的奇函数f(x)单调递减,且f(2)=0,则满足x的取值范围是(       

    A B

    C D

    【答案】D

    【分析】首先根据函数奇偶性与单调性,得到函数在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.

    【解析】因为定义在上的奇函数上单调递减,且

    所以上也是单调递减,且

    所以当时,,当时,

    所以由可得:

    解得,所以满足的取值范围是

    故选:D.

    【点睛】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题.
    62020年新高考2卷(海南卷)】已知函数上单调递增,则的取值范围是(       

    A B C D

    【答案】D

    【分析】首先求出的定义域,然后求出的单调递增区间即可.

    【解析】由

    所以的定义域为

    因为上单调递增

    所以上单调递增

    所以故选:D.

    【点睛】在求函数的单调区间时一定要先求函数的定义域.
    72022年新高考1卷】已知函数及其导函数的定义域均为,记,若均为偶函数,则(       

    A B C D

    【答案】BC

    【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.

    【解析】因为均为偶函数,

    所以

    所以,则,故C正确;

    函数的图象分别关于直线对称,

    ,且函数可导,所以

    所以,所以

    所以,故B正确,D错误;

    若函数满足题设条件,则函数C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.

    【点睛】解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.
    82021年新高考2卷】设正整数,其中,记.则(       

    A B

    C D

    【答案】ACD

    【分析】利用的定义可判断ACD选项的正误,利用特殊值法可判断B选项的正误.

    【解析】对于A选项,

    所以,A选项正确;

    对于B选项,取

    ,则,即B选项错误;

    对于C选项,

    所以,

    所以,,因此,C选项正确;

    对于D选项,,故D选项正确.

    故选:ACD.
    92021年新高考1卷】已知函数是偶函数,则______.

    【答案】1

    【分析】利用偶函数的定义可求参数的值.

    【解析】因为,故

    因为为偶函数,故

    ,整理得到

    ,故答案为:1
    102021年新高考1卷】函数的最小值为______.

    【答案】1

    【分析】由解析式知定义域为,讨论,并结合导数研究的单调性,即可求最小值.

    【解析】由题设知:定义域为

    时,,此时单调递减;

    时,,有,此时单调递减;

    时,,有,此时单调递增;

    在各分段的界点处连续,

    综上有:时,单调递减,时,单调递增;

    故答案为:1.
    112021年新高考2卷】写出一个同时具有下列性质①②③的函数_______

    时,是奇函数.

    【答案】(答案不唯一,均满足)

    【分析】根据幂函数的性质可得所求的.

    【解析】取,则,满足

    时有,满足

    的定义域为,又,故是奇函数,满足.

    故答案为:(答案不唯一,均满足)


     

    相关试卷

    【高考真题分项汇编】专题02 函数的概念与基本初等函数(原卷+解析卷)高考真题和模拟题数学分项汇编: 这是一份【高考真题分项汇编】专题02 函数的概念与基本初等函数(原卷+解析卷)高考真题和模拟题数学分项汇编,文件包含专题02函数的概念与基本初等函数I-2022年高考真题和模拟题数学分项汇编原卷版docx、专题02函数的概念与基本初等函数I-2022年高考真题和模拟题数学分项汇编解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    高考数学真题分项汇编三年(2021-2023)(全国通用)专题02+函数的概念与基本初等函数Ⅰ: 这是一份高考数学真题分项汇编三年(2021-2023)(全国通用)专题02+函数的概念与基本初等函数Ⅰ,文件包含专题02函数的概念与基本初等函数Ⅰ全国通用解析版docx、专题02函数的概念与基本初等函数Ⅰ全国通用原卷版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。

    专题04 立体几何-三年(2020-2022)高考数学真题分项汇编(新高考地区专用): 这是一份专题04 立体几何-三年(2020-2022)高考数学真题分项汇编(新高考地区专用),文件包含专题04立体几何新高考教师版docx、专题04立体几何新高考学生版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题02 函数的概念与基本初等函数Ⅰ-三年(2020-2022)高考数学真题分项汇编(新高考地区专用)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map