07解答题中档题知识点分类-浙江省2022年各地区中考数学真题分类汇编
展开07解答题中档题知识点分类-浙江省2022年各地区中考数学真题分类汇编
一.规律型:数字的变化类(共1小题)
1.(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.
(1)尝试:
①当a=1时,152=225=1×2×100+25;
②当a=2时,252=625=2×3×100+25;
③当a=3时,352=1225= ;
……
(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.
(3)运用:若与100a的差为2525,求a的值.
二.解一元一次不等式(共1小题)
2.(2022•金华)解不等式:2(3x﹣2)>x+1.
三.一次函数的应用(共2小题)
3.(2022•绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).
x
0
0.5
1
1.5
2
y
1
1.5
2
2.5
3
为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=(k≠0).
(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.
(2)当水位高度达到5米时,求进水用时x.
4.(2022•丽水)因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.
(1)求出a的值;
(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;
(3)问轿车比货车早多少时间到达乙地?
四.反比例函数与一次函数的交点问题(共2小题)
5.(2022•杭州)设函数y1=,函数y2=k2x+b(k1,k2,b是常数,k1≠0,k2≠0).
(1)若函数y1和函数y2的图象交于点A(1,m),点B(3,1),
①求函数y1,y2的表达式;
②当2<x<3时,比较y1与y2的大小(直接写出结果).
(2)若点C(2,n)在函数y1的图象上,点C先向下平移2个单位,再向左平移4个单位,得点D,点D恰好落在函数y1的图象上,求n的值.
6.(2022•宁波)如图,正比例函数y=﹣x的图象与反比例函数y=(k≠0)的图象都经过点A(a,2).
(1)求点A的坐标和反比例函数表达式.
(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.
五.反比例函数的应用(共1小题)
7.(2022•台州)如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.
(1)求y关于x的函数解析式.
(2)若火焰的像高为3cm,求小孔到蜡烛的距离.
六.二次函数的最值(共1小题)
8.(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
(1)求b,c的值.
(2)当﹣4≤x≤0时,求y的最大值.
(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.
七.抛物线与x轴的交点(共1小题)
9.(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.
(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.
(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.
(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.
八.二次函数的应用(共2小题)
10.(2022•温州)根据以下素材,探索完成任务.
如何设计拱桥景观灯的悬挂方案?
素材1
图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.
素材2
为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.
问题解决
任务1
确定桥拱形状
在图2中建立合适的直角坐标系,求抛物线的函数表达式.
任务2
探究悬挂范围
在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
任务3
拟定设计方案
给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.
11.(2022•金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:
①统计售价与需求量的数据,通过描点(图1),发现该蔬莱需求量y需求(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y需求=ax2+c,部分对应值如下表:
售价x(元/千克)
…
2.5
3
3.5
4
…
需求量y需求(吨)
…
7.75
7.2
6.55
5.8
…
②该蔬莱供给量y供给(吨)关于售价x(元/千克)的函数表达式为y供给=x﹣1,函数图象见图1.
③1~7月份该蔬莱售价x售价(元/千克)、成本x成本(元/千克)关于月份t的函教表达式分别为x售价=t+2,x成本=t2﹣t+3,函数图象见图2.
请解答下列问题:
(1)求a,c的值.
(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.
(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.
九.平行四边形的判定与性质(共1小题)
12.(2022•温州)如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.
(1)求证:四边形DEFG是平行四边形.
(2)当AD=5,tan∠EDC=时,求FG的长.
一十.矩形的性质(共1小题)
13.(2022•丽水)如图,将矩形纸片ABCD折叠,使点B与点D重合,点A落在点P处,折痕为EF.
(1)求证:△PDE≌△CDF;
(2)若CD=4cm,EF=5cm,求BC的长.
一十一.正方形的性质(共2小题)
14.(2022•湖州)已知在Rt△ABC中,∠ACB=90°,a,b分别表示∠A,∠B的对边,a>b.记△ABC的面积为S.
(1)如图1,分别以AC,CB为边向形外作正方形ACDE和正方形BGFC.记正方形ACDE的面积为S1,正方形BGFC的面积为S2.
①若S1=9,S2=16,求S的值;
②延长EA交GB的延长线于点N,连结FN,交BC于点M,交AB于点H.若FH⊥AB(如图2所示),求证:S2﹣S1=2S.
(2)如图3,分别以AC,CB为边向形外作等边三角形ACD和等边三角形CBE,记等边三角形ACD的面积为S1,等边三角形CBE的面积为S2.以AB为边向上作等边三角形ABF(点C在△ABF内),连结EF,CF.若EF⊥CF,试探索S2﹣S1与S之间的等量关系,并说明理由.
15.(2022•杭州)在正方形ABCD中,点M是边AB的中点,点E在线段AM上(不与点A重合),点F在边BC上,且AE=2BF,连接EF,以EF为边在正方形ABCD内作正方形EFGH.
(1)如图1,若AB=4,当点E与点M重合时,求正方形EFGH的面积.
(2)如图2,已知直线HG分别与边AD,BC交于点I,J,射线EH与射线AD交于点K.
①求证:EK=2EH;
②设∠AEK=α,△FGJ和四边形AEHI的面积分别为S1,S2.求证:=4sin2α﹣1.
一十二.四边形综合题(共1小题)
16.(2022•绍兴)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.
(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.
(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.
(3)当直线MN恰好经过点C时,求DE的长.
一十三.正多边形和圆(共1小题)
17.(2022•金华)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:
作法 如图2.
1.作直径AF.
2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.
3.连结AM,MN,NA.
(1)求∠ABC的度数.
(2)△AMN是正三角形吗?请说明理由.
(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连结这些分点,得到正n边形,求n的值.
一十四.相似三角形的判定与性质(共1小题)
18.(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,=.
(1)若AB=8,求线段AD的长.
(2)若△ADE的面积为1,求平行四边形BFED的面积.
一十五.特殊角的三角函数值(共1小题)
19.(2022•绍兴)(1)计算:6tan30°+(π+1)0﹣.
(2)解方程组:.
一十六.解直角三角形的应用(共1小题)
20.(2022•宁波)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.
(1)若∠ABD=53°,求此时云梯AB的长.
(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.
(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)
一十七.算术平均数(共1小题)
21.(2022•杭州)某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取,他们的各项成绩(单项满分100分)如下表所示:
候选人
文化水平
艺术水平
组织能力
甲
80分
87分
82分
乙
80分
96分
76分
(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?
(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?
参考答案与试题解析
一.规律型:数字的变化类(共1小题)
1.(2022•嘉兴)设是一个两位数,其中a是十位上的数字(1≤a≤9).例如,当a=4时,表示的两位数是45.
(1)尝试:
①当a=1时,152=225=1×2×100+25;
②当a=2时,252=625=2×3×100+25;
③当a=3时,352=1225= 3×4×100+25 ;
……
(2)归纳:与100a(a+1)+25有怎样的大小关系?试说明理由.
(3)运用:若与100a的差为2525,求a的值.
【解答】解:(1)∵①当a=1时,152=225=1×2×100+25;②当a=2时,252=625=2×3×100+25;
∴③当a=3时,352=1225=3×4×100+25,
故答案为:3×4×100+25;
(2)=100a(a+1)+25,理由如下:
=(10a+5)(10a+5)=100a2+100a+25=100a(a+1)+25;
(3)由题知,﹣100a=2525,
即100a2+100a+25﹣100a=2525,
解得a=5或﹣5(舍去),
∴a的值为5.
二.解一元一次不等式(共1小题)
2.(2022•金华)解不等式:2(3x﹣2)>x+1.
【解答】解:去括号得:
6x﹣4>x+1,
移项得:
6x﹣x>4+1,
合并同类项得:
5x>5,
∴x>1.
三.一次函数的应用(共2小题)
3.(2022•绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).
x
0
0.5
1
1.5
2
y
1
1.5
2
2.5
3
为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=(k≠0).
(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.
(2)当水位高度达到5米时,求进水用时x.
【解答】解:(1)函数的图象如图所示:
根据图象可知:选择函数y=kx+b,
将(0,1),(1,2)代入,
得
解得
∴函数表达式为:y=x+1(0≤x≤5);
(2)当y=5时,x+1=5,
∴x=4.
答:当水位高度达到5米时,进水用时x为4小时.
4.(2022•丽水)因疫情防控需要,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.
(1)求出a的值;
(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;
(3)问轿车比货车早多少时间到达乙地?
【解答】解:(1)∵货车的速度是60km/h,
∴a==1.5(h);
(2)由图象可得点(1.5,0),(3,150),
设直线的表达式为s=kt+b,把(1.5,0),(3,150)代入得:
,
解得,
∴s=100t﹣150;
(3)由图象可得货车走完全程需要+0.5=6(h),
∴货车到达乙地需6h,
∵s=100t﹣150,s=330,
解得t=4.8,
∴两车相差时间为6﹣4.8=1.2(h),
∴货车还需要1.2h才能到达,
即轿车比货车早1.2h到达乙地.
四.反比例函数与一次函数的交点问题(共2小题)
5.(2022•杭州)设函数y1=,函数y2=k2x+b(k1,k2,b是常数,k1≠0,k2≠0).
(1)若函数y1和函数y2的图象交于点A(1,m),点B(3,1),
①求函数y1,y2的表达式;
②当2<x<3时,比较y1与y2的大小(直接写出结果).
(2)若点C(2,n)在函数y1的图象上,点C先向下平移2个单位,再向左平移4个单位,得点D,点D恰好落在函数y1的图象上,求n的值.
【解答】解:(1)把点B(3,1)代入y1=,
3=,
解得:k1=3,
∴函数y1的表达式为y1=,
把点A(1,m)代入y1=,解得m=3,
把点A(1,3),点B(3,1)代入y2=k2x+b,
,
解得,
∴函数y2的表达式为y2=﹣x+4;
(2)如图,
当2<x<3时,y1<y2;
(3)由平移,可得点D坐标为(﹣2,n﹣2),
∴﹣2(n﹣2)=2n,
解得:n=1,
∴n的值为1.
6.(2022•宁波)如图,正比例函数y=﹣x的图象与反比例函数y=(k≠0)的图象都经过点A(a,2).
(1)求点A的坐标和反比例函数表达式.
(2)若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,请根据图象直接写出n的取值范围.
【解答】解:(1)把A(a,2)的坐标代入y=x,即2=﹣a,
解得a=﹣3,
∴A(﹣3,2),
又∵点A(﹣3,2)是反比例函数y=的图象上,
∴k=﹣3×2=﹣6,
∴反比例函数的关系式为y=﹣;
(2)∵点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,
∴﹣3<m<0或0<m<3,
当m=﹣3时,n==2,当m=3时,n==2,
由图象可知,
若点P(m,n)在该反比例函数图象上,且它到y轴距离小于3,n的取值范围为n>2或n<﹣2.
五.反比例函数的应用(共1小题)
7.(2022•台州)如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.
(1)求y关于x的函数解析式.
(2)若火焰的像高为3cm,求小孔到蜡烛的距离.
【解答】解:(1)由题意设:y=,
把x=6,y=2代入,得k=6×2=12,
∴y关于x的函数解析式为:y=;
(2)把y=3代入y=,得,x=4,
∴小孔到蜡烛的距离为4cm.
六.二次函数的最值(共1小题)
8.(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
(1)求b,c的值.
(2)当﹣4≤x≤0时,求y的最大值.
(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.
【解答】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,
得b=﹣6,c=﹣3.
(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,
又∵﹣4≤x≤0,
∴当x=﹣3时,y有最大值为6.
(3)①当﹣3<m≤0时,
当x=0时,y有最小值为﹣3,
当x=m时,y有最大值为﹣m2﹣6m﹣3,
∴﹣m2﹣6m﹣3+(﹣3)=2,
∴m=﹣2或m=﹣4(舍去).
②当m≤﹣3时,
当x=﹣3时y有最大值为6,
∵y的最大值与最小值之和为2,
∴y最小值为﹣4,
∴﹣(m+3)2+6=﹣4,
∴m=或m=(舍去).
综上所述,m=﹣2或.
七.抛物线与x轴的交点(共1小题)
9.(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.
(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.
(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.
(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.
【解答】解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),
∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.
∴抛物线的对称轴为直线x=﹣=.
(2)把y1=2(x﹣h)2﹣2化成一般式得,
y1=2x2﹣4hx+2h2﹣2.
∴b=﹣4h,c=2h2﹣2.
∴b+c=2h2﹣4h﹣2
=2(h﹣1)2﹣4.
把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,
∴当h=1时,b+c的最小值是﹣4.
(3)由题意得,y=y1﹣y2
=2(x﹣m) (x﹣m﹣2)﹣(x﹣m)
= (x﹣m)[2(x﹣m)﹣5].
∵函数y的图象经过点 (x0,0),
∴(x0﹣m)[2(x0﹣m)﹣5]=0.
∴x0﹣m=0,或2(x0﹣m)﹣5=0.
即x0﹣m=0或x0﹣m=.
八.二次函数的应用(共2小题)
10.(2022•温州)根据以下素材,探索完成任务.
如何设计拱桥景观灯的悬挂方案?
素材1
图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽20m,拱顶离水面5m.据调查,该河段水位在此基础上再涨1.8m达到最高.
素材2
为迎佳节,拟在图1桥洞前面的桥拱上悬挂40cm长的灯笼,如图3.为了安全,灯笼底部距离水面不小于1m;为了实效,相邻两盏灯笼悬挂点的水平间距均为1.6m;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.
问题解决
任务1
确定桥拱形状
在图2中建立合适的直角坐标系,求抛物线的函数表达式.
任务2
探究悬挂范围
在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
任务3
拟定设计方案
给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.
【解答】解:任务1:
以拱顶为原点,建立如图1所示的直角坐标系,则顶点为(0,0),且过点B(10,﹣5),
设抛物线的解析式为:y=ax2,
把点B(10,﹣5)代入得:100a=﹣5,
∴a=﹣,
∴抛物线的函数表达式为:y=﹣x2;
任务2:
∵该河段水位再涨1.8m达到最高,灯笼底部距离水面不小于1m,灯笼长0.4m,
∴当悬挂点的纵坐标y≥﹣5+1.8+1+0.4=﹣1.8,
即悬挂点的纵坐标的最小值是﹣1.8m,
当y=﹣1.8时,﹣x2=﹣1.8,
∴x=±6,
∴悬挂点的横坐标的取值范围是:﹣6≤x≤6;
任务3:
方案一:如图2(坐标轴的横轴),从顶点处开始悬挂灯笼,
∵﹣6≤x≤6,相邻两盏灯笼悬挂点的水平间距均为1.6m,
∴若顶点一侧悬挂4盏灯笼时,1.6×4>6,
若顶点一侧悬挂3盏灯笼时,1.6×3<6,
∴顶点一侧最多悬挂3盏灯笼,
∵灯笼挂满后成轴对称分布,
∴共可挂7盏灯笼,
∴最左边一盏灯笼的横坐标为:﹣1.6×3=﹣4.8;
方案二:如图3,
∵若顶点一侧悬挂5盏灯笼时,0.8+1.6×(5﹣1)>6,
若顶点一侧悬挂4盏灯笼时,0.8+1.6×(4﹣1)<6,
∴顶点一侧最多悬挂4盏灯笼,
∵灯笼挂满后成轴对称分布,
∴共可挂8盏灯笼,
∴最左边一盏灯笼的横坐标为:﹣0.8﹣1.6×3=﹣﹣5.6.
11.(2022•金华)“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:
①统计售价与需求量的数据,通过描点(图1),发现该蔬莱需求量y需求(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y需求=ax2+c,部分对应值如下表:
售价x(元/千克)
…
2.5
3
3.5
4
…
需求量y需求(吨)
…
7.75
7.2
6.55
5.8
…
②该蔬莱供给量y供给(吨)关于售价x(元/千克)的函数表达式为y供给=x﹣1,函数图象见图1.
③1~7月份该蔬莱售价x售价(元/千克)、成本x成本(元/千克)关于月份t的函教表达式分别为x售价=t+2,x成本=t2﹣t+3,函数图象见图2.
请解答下列问题:
(1)求a,c的值.
(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.
(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.
【解答】解:(1)把(3,7.2),(4,5.8)代入y需求=ax2+c,
,
②﹣①,得7a=﹣1.4,
解得:a=﹣,
把a=﹣代入①,得c=9,
∴a的值为﹣,c的值为9;
(2)设这种蔬菜每千克获利w元,根据题意,
w=x售价﹣x成本=t+2﹣(t2﹣t+3)=﹣(t﹣4)2+3,
∵﹣<0,且1≤t≤7,
∴当t=4时,w有最大值,
答:在4月份出售这种蔬菜每千克获利最大;
(3)当y供给=y需求时,x﹣1=﹣x2+9,
解得:x1=5,x2=﹣10(舍去),
∴此时售价为5元/千克,
则y供给=x﹣1=5﹣1=4(吨)=4000(千克),
令t+2=5,解得t=6,
∴w=﹣(t﹣4)2+3=﹣(6﹣4)2+3=2,
∴总利润为w•y=2×4000=8000(元),
答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.
九.平行四边形的判定与性质(共1小题)
12.(2022•温州)如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.
(1)求证:四边形DEFG是平行四边形.
(2)当AD=5,tan∠EDC=时,求FG的长.
【解答】(1)证明:∵E,F分别是AC,AB的中点,
∴EF是△ABC的中位线,
∴EF∥BC,
∴∠EFO=∠GDO,
∵O是DF的中点,
∴OF=OD,
在△OEF和△OGD中,
,
∴△OEF≌△OGD(ASA),
∴EF=GD,
∴四边形DEFG是平行四边形.
(2)解:∵AD⊥BC,
∴∠ADC=90°,
∵E是AC的中点,
∴DE=AC=CE,
∴∠C=∠EDC,
∴tanC==tan∠EDC=,
即=,
∴CD=2,
∴AC===,
∴DE=AC=,
由(1)可知,四边形DEFG是平行四边形,
∴FG=DE=.
一十.矩形的性质(共1小题)
13.(2022•丽水)如图,将矩形纸片ABCD折叠,使点B与点D重合,点A落在点P处,折痕为EF.
(1)求证:△PDE≌△CDF;
(2)若CD=4cm,EF=5cm,求BC的长.
【解答】(1)证明:∵四边形ABCD是矩形,
∴∠A=∠ADC=∠B=∠C=90°,AB=CD,
由折叠得:AB=PD,∠A=∠P=90°,∠B=∠PDF=90°,
∴PD=CD,
∵∠PDF=∠ADC,
∴∠PDE=∠CDF,
在△PDE和△CDF中,
,
∴△PDE≌△CDF(ASA);
(2)解:如图,过点E作EG⊥BC于G,
∴∠EGF=90°,EG=CD=4,
在Rt△EGF中,由勾股定理得:FG==3,
设CF=x,
由(1)知:PE=AE=BG=x,
∵AD∥BC,
∴∠DEF=∠BFE,
由折叠得:∠BFE=∠DFE,
∴∠DEF=∠DFE,
∴DE=DF=x+3,
在Rt△CDF中,由勾股定理得:DF2=CD2+CF2,
∴x2+42=(x+3)2,
∴x=,
∴BC=2x+3=+3=(cm).
一十一.正方形的性质(共2小题)
14.(2022•湖州)已知在Rt△ABC中,∠ACB=90°,a,b分别表示∠A,∠B的对边,a>b.记△ABC的面积为S.
(1)如图1,分别以AC,CB为边向形外作正方形ACDE和正方形BGFC.记正方形ACDE的面积为S1,正方形BGFC的面积为S2.
①若S1=9,S2=16,求S的值;
②延长EA交GB的延长线于点N,连结FN,交BC于点M,交AB于点H.若FH⊥AB(如图2所示),求证:S2﹣S1=2S.
(2)如图3,分别以AC,CB为边向形外作等边三角形ACD和等边三角形CBE,记等边三角形ACD的面积为S1,等边三角形CBE的面积为S2.以AB为边向上作等边三角形ABF(点C在△ABF内),连结EF,CF.若EF⊥CF,试探索S2﹣S1与S之间的等量关系,并说明理由.
【解答】(1)①解:∵S1=9,S2=16,
∴b=3,a=4,
∵∠ACB=90°,
∴S=ab==6;
②证明:由题意得:∠FAN=∠ANB=90°,
∴∠FAH+∠NAB=90°,
∵FH⊥AB,
∴∠FAH+∠AFN=90°,
∴∠AFN=∠NAB,
∴△AFN∽△NAB,
∴,即,
∴ab+b2=a2,
∴2S+S1=S2,
∴S2﹣S1=2S;
(2)解:S2﹣S1=S,
理由:∵△ABF和△CBE都是等边三角形,
∴AB=FB,CB=EB,∠ABF=∠CBE=60°,
∴∠ABF﹣∠CBF=∠CBE﹣∠CBF,
∴∠ABC=∠FBE,
在△ABC和△FBE中,
,
∴△ABC≌△FBE(SAS),
∴AC=FE=b,∠FEB=∠ACB=90°,
∴∠FEC=90°﹣60°=30°,
∵EF⊥CF,CE=BC=a,
∴sin∠FEC=,即sin30°=,
∴b=asin30°=a,
∴S=ab=a2,
∵△ACD和△CBE都是等边三角形,
∴,,
∴S2﹣S1==﹣==×,
∴S2﹣S1=S.
15.(2022•杭州)在正方形ABCD中,点M是边AB的中点,点E在线段AM上(不与点A重合),点F在边BC上,且AE=2BF,连接EF,以EF为边在正方形ABCD内作正方形EFGH.
(1)如图1,若AB=4,当点E与点M重合时,求正方形EFGH的面积.
(2)如图2,已知直线HG分别与边AD,BC交于点I,J,射线EH与射线AD交于点K.
①求证:EK=2EH;
②设∠AEK=α,△FGJ和四边形AEHI的面积分别为S1,S2.求证:=4sin2α﹣1.
【解答】(1)解:如图1,
∵点M是边AB的中点,若AB=4,当点E与点M重合,
∴AE=BE=2,
∵AE=2BF,
∴BF=1,
在Rt△EBF中,EF2=EB2+BF2=22+12=5,
∴正方形EFGH的面积=EF2=5;
(2)如图2,
①证明:
∵四边形ABCD是正方形,
∴∠A=∠B=90°,
∴∠K+∠AEK=90°,
∵四边形EFGH是正方形,
∴∠KEF=90°,EH=EF,
∴∠AEK+∠BEF=90°,
∴∠AKE=∠BEF,
∴△AKE∽△BEF,
∴,
∵AE=2BF,
∴,
∴EK=2EF,
∴EK=2EH;
②证明:∵四边形ABCD是正方形,
∴AD∥BC,
∴∠KIH=∠GJF,
∵四边形EFGH是正方形,
∴∠IHK=∠EHG=∠HGF=∠FGJ=90°,EH=FG,
∵KE=2EH,
∴EH=KH,
∴KH=FG,
在△KHI和△FGJ中,
,
∴△KHI≌△FGJ(AAS),
∴S△KHI=S△FGJ=S1,
∵∠K=∠K,∠A=∠IHK=90°,
∴△KAE∽△KHI,
∴==,
∵sinα=,
∴sin2α=,
∴=4sin2α,
∴=4sin2α﹣1.
一十二.四边形综合题(共1小题)
16.(2022•绍兴)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.
(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.
(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.
(3)当直线MN恰好经过点C时,求DE的长.
【解答】解:(1)∵DE=2,
∴AE=AB=6,
∵四边形ABCD是矩形,
∴∠A=90°,
∴∠AEB=∠ABE=45°.
由对称性知∠BEM=45°,
∴∠AEM=90°.
(2)如图2,∵AB=6,AD=8,
∴BD=10,
∵当N落在BC延长线上时,BN=BD=10,
∴CN=2.
由对称性得,∠ENC=∠BDC,
∴cos∠ENC=,
得EN=,
∴DE=EN=.
∵BM=AB=CD,MN=AD=BC,
∴Rt△BMN≌Rt△DCB(HL),
∴∠DBC=∠BNM,
∴MN∥BD.
(3)如图3,当E在边AD上时,
∴∠BMC=90°,
∴MC=.
∵BM=AB=CD,∠DEC=∠BCE,
∴△BCM≌△CED(AAS),
∴DE=MC=.
如图4,点E在边CD上时,
∵BM=6,BC=8,
∴MC=,CN=8﹣.
∵∠BMC=∠CNE=∠BCD=90°,
∴△BMC∽△CNE,
∴,
∴EN=,
∴DE=EN=.
综上所述,DE的长为或.
一十三.正多边形和圆(共1小题)
17.(2022•金华)如图1,正五边形ABCDE内接于⊙O,阅读以下作图过程,并回答下列问题:
作法 如图2.
1.作直径AF.
2.以F为圆心,FO为半径作圆弧,与⊙O交于点M,N.
3.连结AM,MN,NA.
(1)求∠ABC的度数.
(2)△AMN是正三角形吗?请说明理由.
(3)从点A开始,以DN长为半径,在⊙O上依次截取点,再依次连结这些分点,得到正n边形,求n的值.
【解答】解:(1)∵五边形ABCDE是正五边形,
∴∠ABC==108°,
即∠ABC=108°;
(2)△AMN是正三角形,
理由:连接ON,NF,
由题意可得:FN=ON=OF,
∴△FON是等边三角形,
∴∠NFA=60°,
∴NMA=60°,
同理可得:∠ANM=60°,
∴∠MAN=60°,
∴△MAN是正三角形;
(3)∵∠AMN=60°,
∴∠AON=120°,
∵∠AOD==144°,
∴∠NOD=∠AOD﹣∠AON=144°﹣120°=24°,
∵360°÷24°=15,
∴n的值是15.
一十四.相似三角形的判定与性质(共1小题)
18.(2022•杭州)如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,=.
(1)若AB=8,求线段AD的长.
(2)若△ADE的面积为1,求平行四边形BFED的面积.
【解答】解:(1)∵四边形BFED是平行四边形,
∴DE∥BF,
∴DE∥BC,
∴△ADE∽△ABC,
∴==,
∵AB=8,
∴AD=2;
(2)∵△ADE∽△ABC,
∴=()2=()2=,
∵△ADE的面积为1,
∴△ABC的面积是16,
∵四边形BFED是平行四边形,
∴EF∥AB,
∴△EFC∽△ABC,
∴=()2=,
∴△EFC的面积=9,
∴平行四边形BFED的面积=16﹣9﹣1=6.
一十五.特殊角的三角函数值(共1小题)
19.(2022•绍兴)(1)计算:6tan30°+(π+1)0﹣.
(2)解方程组:.
【解答】解:(1)原式=6×+1﹣2
=
=1;
(2),
①+②得:3x=6,
解得x=2,
把x=2代入②,得:y=0,
∴原方程组的解是.
一十六.解直角三角形的应用(共1小题)
20.(2022•宁波)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.
(1)若∠ABD=53°,求此时云梯AB的长.
(2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.
(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)
【解答】解:(1)在Rt△ABD中,∠ABD=53°,BD=9m,
∴AB=≈=15(m),
∴此时云梯AB的长为15m;
(2)在该消防车不移动位置的前提下,云梯能伸到险情处,
理由:由题意得:
DE=BC=2m,
∵AE=19m,
∴AD=AE﹣DE=19﹣2=17(m),
在Rt△ABD中,BD=9m,
∴AB===(m),
∵m<20m,
∴在该消防车不移动位置的前提下,云梯能伸到险情处.
一十七.算术平均数(共1小题)
21.(2022•杭州)某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取,他们的各项成绩(单项满分100分)如下表所示:
候选人
文化水平
艺术水平
组织能力
甲
80分
87分
82分
乙
80分
96分
76分
(1)如果把各项成绩的平均数作为综合成绩,应该录取谁?
(2)如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?
【解答】解:(1)甲的平均成绩为=83(分);
乙的平均成绩为=84(分),
因为乙的平均成绩高于甲的平均成绩,
所以乙被录用;
(2)根据题意,甲的平均成绩为80×20%+87×20%+82×60%=82.6(分),
乙的平均成绩为80×20%+96×20%+76×60%=80.8(分),
因为甲的平均成绩高于乙的平均成绩,
所以甲被录用.
黑龙江省各地区2022年中考数学真题按题型分层分类汇编-07解答题(中档题): 这是一份黑龙江省各地区2022年中考数学真题按题型分层分类汇编-07解答题(中档题),共39页。试卷主要包含了÷,其中a=2cs30°+1,之间的函数图象,之间的函数图象如图所示,两点等内容,欢迎下载使用。
湖北省各地区2022年中考数学真题按题型分层分类汇编-07解答题(中档题): 这是一份湖北省各地区2022年中考数学真题按题型分层分类汇编-07解答题(中档题),共72页。试卷主要包含了已知x+=3,求下列各式的值,先化简,再求值,的关系如图所示,之间的函数关系如图所示,两点,与y轴交于点C等内容,欢迎下载使用。
四川省2022年各地区中考数学真题按题型分层分类汇编-07解答题(中档题): 这是一份四川省2022年各地区中考数学真题按题型分层分类汇编-07解答题(中档题),共83页。试卷主要包含了﹣2,,其中x=﹣1,﹣1﹣;,阅读材料等内容,欢迎下载使用。