年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学一轮复习考点规范练53随机事件的概率含解析新人教A版文

    立即下载
    加入资料篮
    高考数学一轮复习考点规范练53随机事件的概率含解析新人教A版文第1页
    高考数学一轮复习考点规范练53随机事件的概率含解析新人教A版文第2页
    高考数学一轮复习考点规范练53随机事件的概率含解析新人教A版文第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习考点规范练53随机事件的概率含解析新人教A版文

    展开

    这是一份高考数学一轮复习考点规范练53随机事件的概率含解析新人教A版文,共9页。试卷主要包含了7D,下列命题等内容,欢迎下载使用。
    考点规范练53 随机事件的概率基础巩固1.从正五边形的五个顶点中,随机选择三个顶点连成三角形,记这个三角形是等腰三角形为事件A,则下列推断正确的是(  )A.事件A发生的概率等于B.事件A发生的概率等于C.事件A是不可能事件D.事件A是必然事件答案:D解析:因为从正五边形的五个顶点中随机选三个顶点连成的三角形都是等腰三角形,所以事件A是必然事件.故选D.2.从16个同类产品(其中有14个正品,2个次品)中任意抽取3个,下列事件的概率为1的是(  )A.三个都是正品  B.三个都是次品C.三个中至少有一个是正品 D.三个中至少有一个是次品答案:C解析:在16个同类产品中,只有2个次品,可知抽取3个产品,A是随机事件,B是不可能事件,C是必然事件,D是随机事件,又必然事件的概率为1,故C正确.3.把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,则事件甲分得红牌乙分得红牌(  )A.是对立事件B.是不可能事件C.是互斥事件但不是对立事件D.不是互斥事件答案:C解析:显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给乙或丙,综上可知这两个事件是互斥事件但不是对立事件.4.从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件抽到的产品不是一等品的概率为(  )A.0.7 B.0.65 C.0.35 D.0.5答案:C解析:抽到的产品不是一等品与事件A是对立事件,所求概率为1-P(A)=0.35.5.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为(  )A.0.2 B.0.3C.0.7 D.0.8答案:B解析:因为必然事件发生的概率是1,所以该同学的身高超过175cm的概率为1-0.2-0.5=0.3,故选B.6.下列命题:对立事件一定是互斥事件;A,B为两个随机事件,则P(AB)=P(A)+P(B);若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;若事件A,B满足P(A)+P(B)=1,则AB是对立事件.其中正确命题的个数是(  )A.1 B.2C.3 D.4答案:A解析:根据对立事件与互斥事件的关系,得正确;不正确,当A,B是互斥事件时,才有P(AB)=P(A)+P(B);不正确,P(A)+P(B)+P(C)不一定等于1,还可能小于1;不正确,例如:袋中有除颜色外,其余均相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A={摸到红球或黄球},事件B={摸到黄球或黑球},显然事件AB不是对立事件,P(A)+P(B)==1.7.中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,已知甲夺得冠军的概率为,乙夺得冠军的概率为,则中国队夺得女子乒乓球单打冠军的概率为    .答案:解析:因为事件中国队夺得女子乒乓球单打冠军包括事件甲夺得冠军乙夺得冠军,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为.8.某班选派5人参加学校举行的数学竞赛,获奖的人数及其概率如下:获奖人数/012345 0.10.16xy0.2z(1)若获奖人数不超过2的概率为0.56,求x的值;(2)若获奖人数最多为4的概率为0.96,最少为3的概率为0.44,求y,z的值.:在竞赛中,有k人获奖为事件Ak(kN,k≤5),则事件Ak彼此互斥.(1)获奖人数不超过2的概率为0.56,P(A0)+P(A1)+P(A2)=0.1+0.16+x=0.56.解得x=0.3.(2)由获奖人数最多为4的概率为0.96,P(A5)=1-0.96=0.04,即z=0.04.由获奖人数最少为3的概率为0.44,P(A3)+P(A4)+P(A5)=0.44,y+0.2+0.04=0.44.解得y=0.2.9.在某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖,且不中一等奖的概率.:(1)由题意可知P(A)=,P(B)=,P(C)=.故事件A,B,C的概率分别为.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.1张奖券中奖为事件M,则M=ABC.A,B,C两两互斥,P(M)=P(ABC)=P(A)+P(B)+P(C)=.故1张奖券的中奖概率为.(3)设1张奖券不中特等奖,且不中一等奖为事件N,则事件N1张奖券中特等奖或中一等奖为对立事件,P(N)=1-P(AB)=1-,即1张奖券不中特等奖,且不中一等奖的概率为.能力提升10.(2020全国,文4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者(  )A.10名 B.18名 C.24名 D.32名答案:B解析:要使第二天完成积压订单及当日订单的配货的概率不小于0.95,而预计第二天新订单超过1600份的概率为0.05,故按第二天可接1600份订单计算.因为超市每天能完成1200份订单的配货,所以第二天志愿者需完成500+(1600-1200)=900(份)订单的配货,所以至少需要志愿者=18(名).故选B.11.假设甲、乙两种品牌的同类产品在某地区市场上的销售量相等,为了了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,统计结果如图所示.(1)估计甲品牌产品寿命小于200 h的概率;(2)在这两种品牌产品中,某个产品已使用了200 h,试估计该产品是甲品牌的概率.:(1)甲品牌产品寿命小于200h的频率为,用频率估计概率,可得甲品牌产品寿命小于200h的概率为.(2)根据频数分布直方图可得寿命不低于200h的两种品牌产品共有75+70=145(个),其中甲品牌产品有75个,所以在样本中,寿命不低于200h的产品是甲品牌的频率是.据此估计已使用了200h的该产品是甲品牌的概率为.12.袋中有除颜色外其他均相同的12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,分别求得到黑球、黄球和绿球的概率各是多少.:(方法一)从袋中选取一个球,记事件摸到红球”“摸到黑球”“摸到黄球”“摸到绿球分别为A,B,C,D,P(A)=,P(BC)=P(B)+P(C)=,P(CD)=P(C)+P(D)=,P(BCD)=P(B)+P(C)+P(D)=1-P(A)=1-,解得P(B)=,P(C)=,P(D)=,因此得到黑球、黄球、绿球的概率分别是.(方法二)设红球有n个,则,即n=4,即红球有4个.又得到黑球或黄球的概率是,所以黑球和黄球共有5个.又总球数是12,所以绿球有12-4-5=3个.又得到黄球或绿球的概率也是,所以黄球和绿球共有5个,而绿球有3个,所以黄球有5-3=2个.所以黑球有12-4-3-2=3个.因此得到黑球、黄球、绿球的概率分别是.13.电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论):(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为=0.025.(2)设随机选取1部电影,这部电影没有获得好评为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628(部).由古典概型概率公式得P(B)==0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率.高考预测14.某企业为了了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图,如图所示,其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.:(1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业的职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在[50,60)的有50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B1,B2},故所求的概率为.

    相关试卷

    高考数学一轮复习考点规范练31数列求和含解析新人教A版文:

    这是一份高考数学一轮复习考点规范练31数列求和含解析新人教A版文,共11页。

    高考数学一轮复习考点规范练60随机事件的概率含解析新人教A版理:

    这是一份高考数学一轮复习考点规范练60随机事件的概率含解析新人教A版理,共9页。试卷主要包含了7D,下列命题等内容,欢迎下载使用。

    高考数学一轮复习考点规范练46双曲线含解析新人教A版文:

    这是一份高考数学一轮复习考点规范练46双曲线含解析新人教A版文,共12页。试卷主要包含了故选C,故选D等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map