高考数学一轮复习单元质检十一概率含解析新人教A版文
展开单元质检十一 概率
(时间:45分钟 满分:100分)
一、选择题(本大题共6小题,每小题7分,共42分)
1.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )
A.0.3 B.0.4 C.0.6 D.0.7
答案:B
解析:设不用现金支付的概率为P,
则P=1-0.45-0.15=0.4.
2.从装有3个红球、2个白球的袋中任取3个球,若事件A=“所取的3个球中至少有1个白球”,则事件A的对立事件是( )
A.1个白球、2个红球 B.2个白球、1个红球
C.3个都是红球 D.至少有1个红球
答案:C
解析:事件A=“所取的3个球中至少有1个白球”说明有白球,白球的个数可能是1或2或3,和事件“1个白球、2个红球”“2个白球、1个红球”“至少有1个红球”都能同时发生,既不互斥,也不对立.故选C.
3.有三个兴趣小组,甲、乙两名同学各自参加其中一个小组,每名同学参加各个小组的可能性相同,则这两名同学参加同一个兴趣小组的概率为( )
A. B. C. D.
答案:A
解析:记三个兴趣小组分别为1,2,3,甲参加兴趣小组1,2,3分别记为“甲1”“甲2”“甲3”,乙参加兴趣小组1,2,3分别记为“乙1”“乙2”“乙3”,则基本事件为“(甲1,乙1),(甲1,乙2),(甲1,乙3),(甲2,乙1),(甲2,乙2),(甲2,乙3),(甲3,乙1),(甲3,乙2),(甲3,乙3)”,共9个,记事件A为“甲、乙两名同学参加同一个兴趣小组”,其中事件A有“(甲1,乙1),(甲2,乙2),(甲3,乙3)”,共3个.因此P(A)=.
4.已知函数f(x)=2x(x<0),其值域为D,在区间(-1,2)上随机取一个数x,则x∈D的概率是( )
A. B. C. D.
答案:B
解析:函数f(x)=2x(x<0)的值域为(0,1),即D=(0,1),则在区间(-1,2)上随机取一个数x,x∈D的概率P=.故选B.
5.七巧板是我国古代劳动人民的发明之一,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.一个用七巧板拼成的正方形如图所示,若在此正方形中任取一点,则此点取自阴影部分的概率是( )
A. B. C. D.
答案:B
解析:不妨设小正方形的边长为1,则两个最小的等腰直角三角形的边长为1,1,,左上角的等腰直角三角形的边长为,2,两个最大的等腰直角三角形的边长为2,2,2,即大正方形的边长为2,所以所求概率P=1-.
6.已知P是△ABC所在平面内一点,4+5+3=0.现将一粒红豆随机撒在△ABC内,则红豆落在△PBC内的概率是( )
A. B. C. D.
答案:A
解析:依题意,易知点P位于△ABC内,作=4=5=3,则=0,点P是△A1B1C1的重心.
,而S△PBC=,
S△PCA=,S△PAB=,
因此S△PBC∶S△PCA∶S△PAB=3∶4∶5,
即,即红豆落在△PBC内的概率等于,故选A.
二、填空题(本大题共2小题,每小题7分,共14分)
7.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 .
答案:0.98
解析:由题意,得经停该高铁站的列车的正点数约为10×0.97+20×0.98+10×0.99=39.2,其中车次数为10+20+10=40,所以经停该站高铁列车所有车次的平均正点率的估计值为=0.98.
8.两名教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两名教师批改成绩之差的绝对值不超过2的概率为 .
答案:0.44
解析:用(x,y)表示两名教师的批改成绩,则(x,y)的所有可能情况为10×10=100(种).
当x=50时,y可取50,51,52,共3种可能;
当x=51时,y可取50,51,52,53,共4种可能;
当x=52,53,54,55,56,57时,y的取法均有5种,共30种可能;
当x=58时,y可取56,57,58,59,共4种可能;
当x=59时,y可取57,58,59,共3种可能.
综上可得,两名教师批改成绩之差的绝对值不超过2的情况有44种.
由古典概型的概率公式可得,所求概率为P==0.44.
三、解答题(本大题共3小题,共44分)
9.(14分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
①试用所给字母列举出所有可能的抽取结果;
②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
解:(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人、2人、2人.
(2)①从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.
②由①,不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.
所以,事件M发生的概率P(M)=.
10.(15分)(2020全国Ⅰ,文17)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级 | A | B | C | D |
频数 | 40 | 20 | 20 | 20 |
乙分厂产品等级的频数分布表
等级 | A | B | C | D |
频数 | 28 | 17 | 34 | 21 |
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
解:(1)由试加工产品等级的频数分布表知,
甲分厂加工出来的一件产品为A级品的概率的估计值为=0.4;
乙分厂加工出来的一件产品为A级品的概率的估计值为=0.28.
(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为
利润 | 65 | 25 | -5 | -75 |
频数 | 40 | 20 | 20 | 20 |
因此甲分厂加工出来的100件产品的平均利润为=15.
由数据知乙分厂加工出来的100件产品利润的频数分布表为
利润 | 70 | 30 | 0 | -70 |
频数 | 28 | 17 | 34 | 21 |
因此乙分厂加工出来的100件产品的平均利润为=10.
比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.
11.(15分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数,算甲赢,否则算乙赢.
(1)若以A表示和为6的事件,求P(A).
(2)现连玩三次,若以B表示甲至少赢一次的事件,C表示乙至少赢两次的事件,试问B与C是否为互斥事件?为什么?
(3)这种游戏规则公平吗?说明理由.
解:(1)甲、乙各出1到5根手指头,共有5×5=25(种)可能结果,
和为6的有(1,5),(5,1),(2,4),(4,2),(3,3),共有5种可能结果,故P(A)=.
(2)B与C不是互斥事件,理由如下:B与C都包含“甲赢一次,乙赢两次”,事件B与事件C可能同时发生,故不是互斥事件.
(3)和为偶数的有13种可能结果,甲赢的概率为P=,故这种游戏规则不公平.
高考数学一轮复习单元质检十二概率A含解析新人教A版理: 这是一份高考数学一轮复习单元质检十二概率A含解析新人教A版理,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高考数学一轮复习单元质检六数列A含解析新人教A版文: 这是一份高考数学一轮复习单元质检六数列A含解析新人教A版文,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高考数学一轮复习单元质检二函数含解析新人教A版文: 这是一份高考数学一轮复习单元质检二函数含解析新人教A版文,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。