高考数学一轮复习高考大题专项练五高考中的解析几何含解析新人教A版文
展开
这是一份高考数学一轮复习高考大题专项练五高考中的解析几何含解析新人教A版文,共11页。试卷主要包含了非选择题等内容,欢迎下载使用。
高考大题专项练五 高考中的解析几何一、非选择题1.设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.解:(1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=,y2=,x1+x2=4,于是直线AB的斜率k==1.(2)由y=,得y'=.设M(x3,y3),由题设知=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=得x2-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2.从而|AB|=|x1-x2|=4.由题设知|AB|=2|MN|,即4=2(m+1),解得m=7.所以直线AB的方程为y=x+7.2.已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.答案:(1)证明设D,A(x1,y1),则=2y1.由于y'=x,所以切线DA的斜率为x1,故=x1.整理得2tx1-2y1+1=0.设B(x2,y2),同理可得2tx2-2y2+1=0.故直线AB的方程为2tx-2y+1=0.所以直线AB过定点.(2)解由(1)得直线AB的方程为y=tx+.由可得x2-2tx-1=0.于是x1+x2=2t,y1+y2=t(x1+x2)+1=2t2+1.设M为线段AB的中点,则M.由于,而=(t,t2-2),与向量(1,t)平行,所以t+(t2-2)t=0.解得t=0或t=±1.当t=0时,||=2,所求圆的方程为x2+=4;当t=±1时,||=,所求圆的方程为x2+=2.3.设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.答案:(1)解当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,-2).所以直线BM的方程为y=x+1或y=-x-1.(2)证明当l与x轴垂直时,AB为MN的垂直平分线,所以∠ABM=∠ABN.当l与x轴不垂直时,设l的方程为y=k(x-2)(k≠0),M(x1,y1),N(x2,y2),则x1>0,x2>0.由得ky2-2y-4k=0,可知y1+y2=,y1y2=-4.直线BM,BN的斜率之和为kBM+kBN=.①将x1=+2,x2=+2及y1+y2,y1y2的表达式代入①式分子,可得x2y1+x1y2+2(y1+y2)==0.所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以∠ABM=∠ABN.综上,∠ABM=∠ABN.4.已知中心在原点O,左焦点为F1(-1,0)的椭圆C的左顶点为A,上顶点为B,F1到直线AB的距离为|OB|.(1)求椭圆C的方程;(2)若椭圆C1的方程为=1(m>n>0),椭圆C2的方程为=λ(λ>0,且λ≠1),则称椭圆C2是椭圆C1的λ倍相似椭圆.如图,已知C2是椭圆C的3倍相似椭圆,若椭圆C的任意一条切线l交椭圆C2于两点M,N,试求弦长|MN|的取值范围.解:(1)设椭圆C的方程为=1(a>b>0),∴直线AB的方程为=1.∴F1(-1,0)到直线AB的距离d=b,a2+b2=7(a-1)2.又b2=a2-1,解得a=2,b=,故椭圆C的方程为=1.(2)椭圆C的3倍相似椭圆C2的方程为=1,①若切线l垂直于x轴,则其方程为x=±2,易求得|MN|=2.②若切线l不垂直于x轴,可设其方程为y=kx+b,将y=kx+b代入椭圆C的方程,得(3+4k2)x2+8kbx+4b2-12=0,∴Δ=(8kb)2-4(3+4k2)(4b2-12)=48(4k2+3-b2)=0,即b2=4k2+3, (*)设M,N两点的坐标分别为(x1,y1),(x2,y2),将y=kx+b代入椭圆C2的方程,得(3+4k2)x2+8kbx+4b2-36=0,此时x1+x2=-,x1x2=,|x1-x2|=,∴|MN|==4=2.∵3+4k2≥3,∴1<1+,即2<2≤4.综合①②,得弦长|MN|的取值范围为[2,4].5.(2020山东,22)已知椭圆C:=1(a>b>0)的离心率为,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.答案:(1)解由题设得=1,,解得a2=6,b2=3,所以C的方程为=1.(2)证明设M(x1,y1),N(x2,y2).若直线MN与x轴不垂直,设直线MN的方程为y=kx+m,代入=1得(1+2k2)x2+4kmx+2m2-6=0.于是x1+x2=-,x1x2=.①由AM⊥AN知=0,故(x1-2)(x2-2)+(y1-1)(y2-1)=0,可得(k2+1)x1x2+(km-k-2)(x1+x2)+(m-1)2+4=0.将①代入上式可得(k2+1)-(km-k-2)+(m-1)2+4=0,整理得(2k+3m+1)(2k+m-1)=0.因为A(2,1)不在直线MN上,所以2k+m-1≠0,故2k+3m+1=0,k≠1.于是MN的方程为y=k(k≠1).所以直线MN过点P.若直线MN与x轴垂直,可得N(x1,-y1).由=0得(x1-2)(x1-2)+(y1-1)(-y1-1)=0.又=1,可得3-8x1+4=0.解得x1=2(舍去),x1=.此时直线MN过点P.令Q为AP的中点,即Q.若D与P不重合,则由题设知AP是Rt△ADP的斜边,故|DQ|=|AP|=.若D与P重合,则|DQ|=|AP|.综上,存在点Q,使得|DQ|为定值.6.已知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴的直线l与椭圆C相交于A,B两点.(1)求椭圆C的方程;(2)求的取值范围;(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.答案:(1)解由题意知,=b,即b=.又a2=b2+c2,所以a=2,b=.故椭圆C的方程为=1.(2)解由题意知直线l的斜率存在,设直线l的方程为y=k(x-4),由可得(3+4k2)x2-32k2x+64k2-12=0.设A(x1,y1),B(x2,y2),则Δ=322k4-4(3+4k2)(64k2-12)>0,所以0≤k2<.则x1+x2=,x1x2=.①所以=x1x2+y1y2=x1x2+k2(x1-4)(x2-4)=(1+k2)x1x2-4k2(x1+x2)+16k2=(1+k2)·-4k2·+16k2=25-.因为0≤k2<,所以-≤-<-,则-4≤25-,即.(3)证明因为B,E关于x轴对称,所以可设E(x2,-y2),则直线AE的方程为y-y1=(x-x1).令y=0,可得x=x1-.因为y1=k(x1-4),y2=k(x2-4),所以x==1,所以直线AE与x轴交于定点(1,0).7.设椭圆=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为,|AB|=.(1)求椭圆的方程;(2)设直线l:y=kx(k<0)与椭圆交于P,Q两点,l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.解:(1)设椭圆的焦距为2c,由已知有.又由a2=b2+c2,可得2a=3b.由|AB|=,从而a=3,b=2.所以,椭圆的方程为=1.(2)设点P的坐标为(x1,y1),点M的坐标为(x2,y2),由题意,x2>x1>0,点Q的坐标为(-x1,-y1).由△BPM的面积是△BPQ面积的2倍,可得|PM|=2|PQ|,从而x2-x1=2[x1-(-x1)],即x2=5x1.易知直线AB的方程为2x+3y=6,由方程组消去y,可得x2=.由方程组消去y,可得x1=.由x2=5x1,可得=5(3k+2),两边平方,整理得18k2+25k+8=0,解得k=-,或k=-.当k=-时,x2=-9<0,不合题意,舍去;当k=-时,x2=12,x1=,符合题意.所以,k的值为-.8.如图,已知椭圆=1的左焦点为F,过点F的直线交椭圆于A,B两点,线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点.(1)若点G的横坐标为-,求直线AB的斜率;(2)记△GFD的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.解:(1)依题意可知,直线AB的斜率存在,设其方程为y=k(x+1),将其代入=1,整理得(4k2+3)x2+8k2x+4k2-12=0.设A(x1,y1),B(x2,y2),所以x1+x2=-.故点G的横坐标为=-,解得k=±.(2)假设存在直线AB,使得S1=S2,显然直线AB不能与x轴或y轴垂直.由(1)可得G.设点D坐标为(xD,0).因为DG⊥AB,所以·k=-1,解得xD=-,即D.因为△GFD∽△OED,且S1=S2,所以|GD|=|OD|.所以,整理得8k2+9=0.因为此方程无解,所以不存在直线AB,使得S1=S2.
相关试卷
这是一份高考数学一轮复习高考大题专项练五高考中的解析几何含解析新人教A版理,共11页。试卷主要包含了非选择题等内容,欢迎下载使用。
这是一份高考数学一轮复习高考大题专项练三高考中的数列含解析新人教A版文,共8页。试卷主要包含了非选择题等内容,欢迎下载使用。
这是一份高考数学一轮复习高考大题专项练一高考中的函数与导数含解析新人教A版文,共9页。试卷主要包含了非选择题等内容,欢迎下载使用。