2021-2022学年广西桂平市中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算结果正确的是( )
A. B.
C. D.
2.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是( )
A. B.
C. D.
3.估计﹣÷2的运算结果在哪两个整数之间( )
A.0和1 B.1和2 C.2和3 D.3和4
4.如图,在中,,,,则等于( )
A. B. C. D.
5.光年天文学中的距离单位,1光年大约是9500000000000km,用科学记数法表示为
A. B. C. D.
6.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为( )
A.① B.② C.③ D.④
7.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为( )
A.85° B.75° C.60° D.30°
8.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )
A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+5
9.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是( )
A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数
10.如果k<0,b>0,那么一次函数y=kx+b的图象经过( )
A.第一、二、三象限 B.第二、三、四象限
C.第一、三、四象限 D.第一、二、四象限
11.如图,点D在△ABC边延长线上,点O是边AC上一个动点,过O作直线EF∥BC,交∠BCA的平分线于点F,交∠BCA的外角平分线于E,当点O在线段AC上移动(不与点A,C重合)时,下列结论不一定成立的是( )
A.2∠ACE=∠BAC+∠B B.EF=2OC C.∠FCE=90° D.四边形AFCE是矩形
12.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=( )
A.6 B.8 C.10 D.12
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.的相反数是______.
14.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.
15.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为_____.
16.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是_______.
17.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.
18.若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(Ⅰ)该教师调查的总人数为 ,图②中的m值为 ;
(Ⅱ)求样本中分数值的平均数、众数和中位数.
20.(6分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.
分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
21.(6分)如下表所示,有A、B两组数:
| 第1个数 | 第2个数 | 第3个数 | 第4个数 | …… | 第9个数 | …… | 第n个数 |
A组 | ﹣6 | ﹣5 | ﹣2 |
| …… | 58 | …… | n2﹣2n﹣5 |
B组 | 1 | 4 | 7 | 10 | …… | 25 | …… |
|
(1)A组第4个数是 ;用含n的代数式表示B组第n个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.
22.(8分)我们知道中,如果,,那么当时,的面积最大为6;
(1)若四边形中,,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.
(2)已知四边形中,,求为多少时,四边形面积最大?并求出最大面积是多少?
23.(8分)如图所示,在中,,用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)连接AP当为多少度时,AP平分.
24.(10分)(1)计算:;
(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.
25.(10分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.
(1)求该反比例函数的解析式;
(1)求三角形CDE的面积.
26.(12分)计算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣1
27.(12分)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.
(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.
(3)应用:请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=6,AD=BD=1.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项.
【详解】
A、原式,故错误;
B、原式,故错误;
C、利用合并同类项的知识可知该选项正确;
D、,,所以原式无意义,错误,
故选C.
【点睛】
本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大.
2、A
【解析】
以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.
【详解】
如图,点E即为所求作的点.故选:A.
【点睛】
本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.
3、D
【解析】
先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.
【详解】
25<32<31,∴5<<1.
原式=﹣2÷2=﹣2,∴3<﹣÷2<2.
故选D.
【点睛】
本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.
4、A
【解析】
分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.
详解:在Rt△ABC中,∵AB=10、AC=8,
∴BC=,
∴sinA=.
故选:A.
点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.
5、C
【解析】
科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将9500000000000km用科学记数法表示为.
故选C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、C
【解析】
根据正方形的判定定理即可得到结论.
【详解】
与左边图形拼成一个正方形,
正确的选择为③,
故选C.
【点睛】
本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.
7、B
【解析】
分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
详解:∵AB∥CD,
∴∠C=∠ABC=30°,
又∵CD=CE,
∴∠D=∠CED,
∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
∴∠D=75°.
故选B.
点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.
8、A
【解析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
抛物线y=x2的顶点坐标为(0,0),
先向左平移2个单位再向下平移1个单位后的抛物线的顶点坐标为(﹣2,﹣1),
所以,平移后的抛物线的解析式为y=(x+2)2﹣1.
故选:A.
【点睛】
本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.
9、C
【解析】
利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.
【详解】
选项A、标号是2是随机事件;
选项B、该卡标号小于6是必然事件;
选项C、标号为6是不可能事件;
选项D、该卡标号是偶数是随机事件;
故选C.
【点睛】
本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.
10、D
【解析】
根据k、b的符号来求确定一次函数y=kx+b的图象所经过的象限.
【详解】
∵k<0,
∴一次函数y=kx+b的图象经过第二、四象限.
又∵b>0时,
∴一次函数y=kx+b的图象与y轴交与正半轴.
综上所述,该一次函数图象经过第一、二、四象限.
故选D.
【点睛】
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
11、D
【解析】
依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.
【详解】
解:∵∠ACD是△ABC的外角,
∴∠ACD=∠BAC+∠B,
∵CE平分∠DCA,
∴∠ACD=2∠ACE,
∴2∠ACE=∠BAC+∠B,故A选项正确;
∵EF∥BC,CF平分∠BCA,
∴∠BCF=∠CFE,∠BCF=∠ACF,
∴∠ACF=∠EFC,
∴OF=OC,
同理可得OE=OC,
∴EF=2OC,故B选项正确;
∵CF平分∠BCA,CE平分∠ACD,
∴∠ECF=∠ACE+∠ACF=×180°=90°,故C选项正确;
∵O不一定是AC的中点,
∴四边形AECF不一定是平行四边形,
∴四边形AFCE不一定是矩形,故D选项错误,
故选D.
【点睛】
本题考查三角形外角性质,角平分线的定义,以及平行线的性质.
12、C
【解析】
试题分析:根据根与系数的关系得到x1+x2=2,x1•x2=﹣3,再变形x12+x22得到(x1+x2)2﹣2x1•x2,然后利用代入计算即可.
解:∵一元二次方程x2﹣2x﹣3=0的两根是x1、x2,
∴x1+x2=2,x1•x2=﹣3,
∴x12+x22=(x1+x2)2﹣2x1•x2=22﹣2×(﹣3)=1.
故选C.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、﹣.
【解析】
根据只有符号不同的两个数叫做互为相反数解答.
【详解】
的相反数是.
故答案为.
【点睛】
本题考查的知识点是相反数,解题关键是熟记相反数的概念.
14、1
【解析】
本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.
【详解】
解:设利润为w元,
则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,
∵10≤x≤20,
∴当x=1时,二次函数有最大值25,
故答案是:1.
【点睛】
本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.
15、1;
【解析】
分析:根据辅助线做法得出CF⊥AB,然后根据含有30°角的直角三角形得出AB和BF的长度,从而得出AF的长度.
详解:∵根据作图法则可得:CF⊥AB, ∵∠ACB=90°,∠A=30°,BC=4,
∴AB=2BC=8, ∵∠CFB=90°,∠B=10°, ∴BF=BC=2,
∴AF=AB-BF=8-2=1.
点睛:本题主要考查的是含有30°角的直角三角形的性质,属于基础题型.解题的关键就是根据作图法则得出直角三角形.
16、
【解析】
共有3种等可能的结果,它们是:3,2,3;4, 2, 3;5, 2, 3;其中三条线段能够成三角形的结果为2,所以三条线段能构成三角形的概率= .故答案为.
17、
【解析】
用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解.
【详解】
解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,
画树状图:
共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,
所以抽到卡片上印有图案都是轴对称图形的概率.
故答案为.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了轴对称图形.
18、1
【解析】
联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.
【详解】
联立得:,
①×2+②,得:10x=20,
解得:x=2,
将x=2代入①,得:1-y=1,
解得:y=0,
则,
将x=2、y=0代入,得:,
解得:,
则mn=1,
故答案为1.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.
【解析】
(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;
(2)根据平均数、众数和中位数的定义求解即可.
【详解】
(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),
m%=×100%=40%,即m=40,
故答案为:25、40;
(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,
则样本分知的平均数为(分),
众数为75分,中位数为第13个数据,即75分.
【点睛】
理解两幅统计图中各数据的含义及其对应关系是解题关键.
20、 (1)抛物线的解析式是.直线AB的解析式是.
(2) .
(3)P点的横坐标是或.
【解析】
(1)分别利用待定系数法求两函数的解析式:把A(3,0)B(0,﹣3)分别代入y=x2+mx+n与y=kx+b,得到关于m、n的两个方程组,解方程组即可;
(2)设点P的坐标是(t,t﹣3),则M(t,t2﹣2t﹣3),用P点的纵坐标减去M的纵坐标得到PM的长,即PM=(t﹣3)﹣(t2﹣2t﹣3)=﹣t2+3t,然后根据二次函数的最值得到
当t=﹣=时,PM最长为=,再利用三角形的面积公式利用S△ABM=S△BPM+S△APM计算即可;
(3)由PM∥OB,根据平行四边形的判定得到当PM=OB时,点P、M、B、O为顶点的四边形为平行四边形,然后讨论:当P在第四象限:PM=OB=3,PM最长时只有,所以不可能;当P在第一象限:PM=OB=3,(t2﹣2t﹣3)﹣(t﹣3)=3;当P在第三象限:PM=OB=3,t2﹣3t=3,分别解一元二次方程即可得到满足条件的t的值.
【详解】
解:(1)把A(3,0)B(0,-3)代入,得
解得
所以抛物线的解析式是.
设直线AB的解析式是,把A(3,0)B(0,)代入,得
解得
所以直线AB的解析式是.
(2)设点P的坐标是(),则M(,),因为在第四象限,所以PM=,当PM最长时,此时
==.
(3)若存在,则可能是:
①P在第四象限:平行四边形OBMP ,PM=OB=3, PM最长时,所以不可能.
②P在第一象限平行四边形OBPM: PM=OB=3,,解得,(舍去),所以P点的横坐标是.
③P在第三象限平行四边形OBPM:PM=OB=3,,解得(舍去),
①,所以P点的横坐标是.
所以P点的横坐标是或.
21、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析
【解析】
(1)将n=4代入n2-2n-5中即可求解;
(2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n个数是3n-2;
(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题.
【详解】
解:(1))∵A组第n个数为n2-2n-5,
∴A组第4个数是42-2×4-5=3,
故答案为3;
(2)第n个数是.
理由如下:
∵第1个数为1,可写成3×1-2;
第2个数为4,可写成3×2-2;
第3个数为7,可写成3×3-2;
第4个数为10,可写成3×4-2;
……
第9个数为25,可写成3×9-2;
∴第n个数为3n-2;
故答案为3n-2;
(3)不存在同一位置上存在两个数据相等;
由题意得,,
解之得,
由于是正整数,所以不存在列上两个数相等.
【点睛】
本题考查了数字的变化类,正确的找出规律是解题的关键.
22、 (1)当,时有最大值1;(2)当时,面积有最大值32.
【解析】
(1)由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,由此即可解决问题.
(2)设BD=x,由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题.
【详解】
(1) 由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
最大面积为×6×(16-6)=1.
故当,时有最大值1;
(2)当,时有最大值,
设, 由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
∴抛物线开口向下
∴当 时,面积有最大值32.
【点睛】
本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.
23、(1)详见解析;(2)30°.
【解析】
(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;
(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.
【详解】
(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,
∵EF为AB的垂直平分线,
∴PA=PB,
∴点P即为所求.
(2)如图,连接AP,
∵,
∴,
∵AP是角平分线,
∴,
∴,
∵,
∴∠PAC+∠PAB+∠B=90°,
∴3∠B=90°,
解得:∠B=30°,
∴当时,AP平分.
【点睛】
本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.
24、(1);(1)1.
【解析】
(1)先计算负整数指数幂、化简二次根式、代入三角函数值、计算零指数幂,再计算乘法和加减运算可得;
(1)先根据整式的混合运算顺序和运算法则化简原式,再利用完全平方公式因式分解,最后将a−b的值整体代入计算可得.
【详解】
(1)原式=4+1﹣8×﹣1=4+1﹣4﹣1=1﹣1;
(1)原式=a1﹣4a+4+b1﹣1ab+4a﹣4=a1﹣1ab+b1=(a﹣b)1,
当a﹣b=时,
原式=()1=1.
【点睛】
本题主要考查实数和整式的混合运算,解题的关键是掌握实数与整式的混合运算顺序和运算法则及完全平方公式因式分解的能力.
25、(1);(1)11.
【解析】
(1)根据正切的定义求出OA,证明△BAO∽△BEC,根据相似三角形的性质计算;
(1)求出直线AB的解析式,解方程组求出点D的坐标,根据三角形CDE的面积=三角形CBE的面积+三角形BED的面积计算即可.
【详解】
解:(1)∵tan∠ABO=,OB=4,
∴OA=1,
∵OE=1,
∴BE=6,
∵AO∥CE,
∴△BAO∽△BEC,
∴=,即=,
解得,CE=3,即点C的坐标为(﹣1,3),
∴反比例函数的解析式为:;
(1)设直线AB的解析式为:y=kx+b,
则,
解得,,
则直线AB的解析式为:,
,
解得,,,
∴当D的坐标为(6,1),
∴三角形CDE的面积=三角形CBE的面积+三角形BED的面积
=×6×3+×6×1
=11.
【点睛】
此题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、求反比例函数与一次函数的交点的方法是解题的关键.
26、1
【解析】
本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.
【详解】
解:原式=2﹣+2×﹣3+1
=1.
【点睛】
本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.
27、(2)证明见解析;(2)结论成立,理由见解析;(3)2秒或2秒.
【解析】
(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;
(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=2-4=2.易证∠DPC=∠A=∠B.根据ADBC=APBP,就可求出t的值.
【详解】
解:(2)如图2,
∵∠DPC=∠A=∠B=90°,
∴∠ADP+∠APD=90°,
∠BPC+∠APD=90°,
∴∠APD=∠BPC,
∴△ADP∽△BPC,
∴,
∴ADBC=APBP;
(2)结论ADBC=APBP仍成立;
证明:如图2,∵∠BPD=∠DPC+∠BPC,
又∵∠BPD=∠A+∠APD,
∴∠DPC+∠BPC=∠A+∠APD,
∵∠DPC=∠A=θ,
∴∠BPC=∠APD,
又∵∠A=∠B=θ,
∴△ADP∽△BPC,
∴,
∴ADBC=APBP;
(3)如下图,过点D作DE⊥AB于点E,
∵AD=BD=2,AB=6,
∴AE=BE=3
∴DE==4,
∵以D为圆心,以DC为半径的圆与AB相切,
∴DC=DE=4,
∴BC=2-4=2,
∵AD=BD,
∴∠A=∠B,
又∵∠DPC=∠A,
∴∠DPC=∠A=∠B,
由(2)(2)的经验得AD•BC=AP•BP,
又∵AP=t,BP=6-t,
∴t(6-t)=2×2,
∴t=2或t=2,
∴t的值为2秒或2秒.
【点睛】
本题考查圆的综合题.
2023年广西贵港市桂平市中考数学三模试卷(含解析): 这是一份2023年广西贵港市桂平市中考数学三模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广西贵港市桂平市中考数学三模试卷(含解析): 这是一份2023年广西贵港市桂平市中考数学三模试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广西合浦县联考2021-2022学年中考一模数学试题含解析: 这是一份广西合浦县联考2021-2022学年中考一模数学试题含解析,共21页。