![2021-2022学年广西浦北县市级名校中考考前最后一卷数学试卷含解析01](http://img-preview.51jiaoxi.com/2/3/13283047/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年广西浦北县市级名校中考考前最后一卷数学试卷含解析02](http://img-preview.51jiaoxi.com/2/3/13283047/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年广西浦北县市级名校中考考前最后一卷数学试卷含解析03](http://img-preview.51jiaoxi.com/2/3/13283047/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年广西浦北县市级名校中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )
A. B. C. D.
2.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)
| 甲种糖果 | 乙种糖果 | 混合糖果 |
方案1 | 2 | 3 | 5 |
方案2 | 3 | 2 | 5 |
方案3 | 2.5 | 2.5 | 5 |
则最省钱的方案为( )
A.方案1 B.方案2
C.方案3 D.三个方案费用相同
3.二次函数的图象如图所示,则下列各式中错误的是( )
A.abc>0 B.a+b+c>0 C.a+c>b D.2a+b=0
4.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为( )
A. B.2 C. D.3
5.如图,AB是⊙O的直径,AB=8,弦CD垂直平分OB,E是弧AD上的动点,AF⊥CE于点F,点E在弧AD上从A运动到D的过程中,线段CF扫过的面积为( )
A.4π+3 B.4π+ C.π+ D.π+3
6.下列计算正确的是()
A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x
7.下列各式中,正确的是( )
A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.
8.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是( )
A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3
9.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为( )
A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)
10.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
A.30° B.25°
C.20° D.15°
11.-sin60°的倒数为( )
A.-2 B. C.- D.-
12.不等式组的解集是( )
A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若a,b互为相反数,则a2﹣b2=_____.
14.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.
15.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).
16.分解因式:x3﹣2x2+x=______.
17.已知,则=_____.
18.已知x+y=,xy=,则x2y+xy2的值为____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.
请根据以上的信息,回答下列问题:
(1)补全扇形统计图和条形统计图;
(2)所抽查学生参加社会实践活动天数的众数是 (选填:A、B、C、D、E);
(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?
20.(6分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为.求 x 和 y 的值.
21.(6分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:
问题1:单价
该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?
问题2:投放方式
该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.
22.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(1)求∠BCD的度数.
(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)
23.(8分)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.
(1)求抛物线的解析式;
(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
24.(10分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.
25.(10分)已知:如图,△MNQ中,MQ≠NQ.
(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;
(2)参考(1)中构造全等三角形的方法解决下面问题:
如图,在四边形ABCD中,,∠B=∠D.求证:CD=AB.
26.(12分)先化简再求值:÷(﹣1),其中x=.
27.(12分)先化简,再求值:,其中x=﹣1.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.
详解:画树状图,得
∴共有8种情况,经过每个路口都是绿灯的有一种,
∴实际这样的机会是.
故选B.
点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.
2、A
【解析】
求出三种方案混合糖果的单价,比较后即可得出结论.
【详解】
方案1混合糖果的单价为,
方案2混合糖果的单价为,
方案3混合糖果的单价为.
∵a>b,
∴,
∴方案1最省钱.
故选:A.
【点睛】
本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.
3、B
【解析】
根据二次函数的图象与性质逐一判断即可.
【详解】
解:由图象可知抛物线开口向上,
∴,
∵对称轴为,
∴,
∴,
∴,故D正确,
又∵抛物线与y轴交于y轴的负半轴,
∴,
∴,故A正确;
当x=1时,,
即,故B错误;
当x=-1时,
即,
∴,故C正确,
故答案为:B.
【点睛】
本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.
4、A
【解析】
设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tan∠DAC的值即可.
【详解】
设AC=a,则BC==a,AB==2a,
∴BD=BA=2a,
∴CD=(2+)a,
∴tan∠DAC=2+.
故选A.
【点睛】
本题主要考查特殊角的三角函数值.
5、A
【解析】
连AC,OC,BC.线段CF扫过的面积=扇形MAH的面积+△MCH的面积,从而证明即可解决问题.
【详解】
如下图,连AC,OC,BC,设CD交AB于H,
∵CD垂直平分线段OB,
∴CO=CB,
∵OC=OB,
∴OC=OB=BC,
∴,
∵AB是直径,
∴,
∴,
∵,
∴点F在以AC为直径的⊙M上运动,当E从A运动到D时,点F从A运动到H,连接MH,
∵MA=MH,
∴
∴,
∵,
∴CF扫过的面积为,
故选:A.
【点睛】
本题主要考查了阴影部分面积的求法,熟练掌握扇形的面积公式及三角形的面积求法是解决本题的关键.
6、C
【解析】
根据合并同类项法则和去括号法则逐一判断即可得.
【详解】
解:A.2x2-3x2=-x2,故此选项错误;
B.x+x=2x,故此选项错误;
C.-(x-1)=-x+1,故此选项正确;
D.3与x不能合并,此选项错误;
故选C.
【点睛】
本题考查了整式的加减,熟练掌握运算法则是解题的关键.
7、B
【解析】
A.括号前是负号去括号都变号;
B负次方就是该数次方后的倒数,再根据前面两个负号为正;
C. 两个负号为正;
D.三次根号和二次根号的算法.
【详解】
A选项,﹣(x﹣y)=﹣x+y,故A错误;
B选项, ﹣(﹣2)﹣1=,故B正确;
C选项,﹣,故C错误;
D选项,22,故D错误.
【点睛】
本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.
8、C
【解析】
根据不等式的性质得出x的解集,进而解答即可.
【详解】
∵-1<2x+b<1
∴,
∵关于x的不等式组-1<2x+b<1的解满足0<x<2,
∴,
解得:-3≤b≤-1,
故选C.
【点睛】
此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.
9、B
【解析】
令x=0,y=6,∴B(0,6),
∵等腰△OBC,∴点C在线段OB的垂直平分线上,
∴设C(a,3),则C '(a-5,3),
∴3=3(a-5)+6,解得a=4,
∴C(4,3).
故选B.
点睛:掌握等腰三角形的性质、函数图像的平移.
10、B
【解析】
根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,
11、D
【解析】
分析:根据乘积为1的两个数互为倒数,求出它的倒数即可.
详解:
的倒数是.
故选D.
点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.
12、D
【解析】
试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.
【详解】∵a,b互为相反数,
∴a+b=1,
∴a2﹣b2=(a+b)(a﹣b)=1,
故答案为1.
【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.
14、(7+6)
【解析】
过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.
【详解】
解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,
∵坝顶部宽为2m,坝高为6m,
∴DC=EF=2m,EC=DF=6m,
∵α=30°,
∴BE= (m),
∵背水坡的坡比为1.2:1,
∴,
解得:AF=5(m),
则AB=AF+EF+BE=5+2+6=(7+6)m,
故答案为(7+6)m.
【点睛】
本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.
15、增大.
【解析】
根据二次函数的增减性可求得答案
【详解】
∵二次函数y=x2
的对称轴是y轴,开口方向向上,∴当y随x的增大而增大.
故答案为:增大.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
16、x(x-1)2.
【解析】
由题意得,x3﹣2x2+x= x(x﹣1)2
17、
【解析】
由可知值,再将化为的形式进行求解即可.
【详解】
解:∵,
∴,
∴原式=.
【点睛】
本题考查了分式的化简求值.
18、3
【解析】
分析:因式分解,把已知整体代入求解.
详解:x2y+xy2=xy(x+y)=3.
点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).
(2)公式法:完全平方公式,平方差公式.
(3)十字相乘法.
因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)见解析;(2)A;(3)800人.
【解析】
(1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;
(2)根据众数的定义即可求解;
(3)利用总人数2000乘以对应的百分比即可求解.
【详解】
解:(1)∵被调查的学生人数为24÷40%=60人,
∴D类别人数为60﹣(24+12+15+3)=6人,
则D类别的百分比为×100%=10%,
补全图形如下:
(2)所抽查学生参加社会实践活动天数的众数是A,
故答案为:A;
(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
20、x=15,y=1
【解析】
根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立.化简可得y与x的函数关系式;
(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=1.
【详解】
依题意得,
,
化简得,,
解得, .,
检验当x=15,y=1时,,,
∴x=15,y=1是原方程的解,经检验,符合题意.
答:x=15,y=1.
【点睛】
此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
21、问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1
【解析】
问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,
依题意得50x+50(x+10)=7500,
解得x=70,
∴x+10=80,
答:A、B两型自行车的单价分别是70元和80元;
问题2:由题可得,×1000+×1000=10000,
解得a=1,
经检验:a=1是分式方程的解,
故a的值为1.
22、(1)38°;(2)20.4m.
【解析】
(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;
(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.
【详解】
(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;
(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CE•tan20°≈10.80m,在Rt△CDE中,DE=CD•tan18°≈9.60m,∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,则教学楼的高约为20.4m.
【点睛】
本题考查了解直角三角形的应用﹣仰角俯角问题,正确添加辅助线构建直角三角形、熟练掌握和灵活运用相关知识是解题的关键.
23、(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,).
【解析】
分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;
(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;
(3)存在四种情况:
如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.
详解:(1)如图1,设抛物线与x轴的另一个交点为D,
由对称性得:D(3,0),
设抛物线的解析式为:y=a(x-1)(x-3),
把A(0,3)代入得:3=3a,
a=1,
∴抛物线的解析式;y=x2-4x+3;
(2)如图2,设P(m,m2-4m+3),
∵OE平分∠AOB,∠AOB=90°,
∴∠AOE=45°,
∴△AOE是等腰直角三角形,
∴AE=OA=3,
∴E(3,3),
易得OE的解析式为:y=x,
过P作PG∥y轴,交OE于点G,
∴G(m,m),
∴PG=m-(m2-4m+3)=-m2+5m-3,
∴S四边形AOPE=S△AOE+S△POE,
=×3×3+PG•AE,
=+×3×(-m2+5m-3),
=-m2+m,
=(m-)2+,
∵-<0,
∴当m=时,S有最大值是;
(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,
∵△OPF是等腰直角三角形,且OP=PF,
易得△OMP≌△PNF,
∴OM=PN,
∵P(m,m2-4m+3),
则-m2+4m-3=2-m,
解得:m=或,
∴P的坐标为(,)或(,);
如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,
同理得△ONP≌△PMF,
∴PN=FM,
则-m2+4m-3=m-2,
解得:x=或;
P的坐标为(,)或(,);
综上所述,点P的坐标是:(,)或(,)或(,)或(,).
点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.
24、(1)见解析;(2)四边形BFGN是菱形,理由见解析.
【解析】
(1)过F作FH⊥BE于点H,可证明四边形BCFH为矩形,可得到BH=CF,且H为BE中点,可得BE=2CF;
(2)由条件可证明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可证得四边形BFGN为菱形.
【详解】
(1)证明:过F作FH⊥BE于H点,
在四边形BHFC中,∠BHF=∠CBH=∠BCF=90°,
所以四边形BHFC为矩形,
∴CF=BH,
∵BF=EF,FH⊥BE,
∴H为BE中点,
∴BE=2BH,
∴BE=2CF;
(2)四边形BFGN是菱形.
证明:
∵将线段EF绕点F顺时针旋转90°得FG,
∴EF=GF,∠GFE=90°,
∴∠EFH+∠BFH+∠GFB=90°
∵BN∥FG,
∴∠NBF+∠GFB=180°,
∴∠NBA+∠ABC+∠CBF+∠GFB=180°,
∵∠ABC=90°,
∴∠NBA+∠CBF+∠GFB=180°−90°=90°,
由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,
∴∠EFH=90°−∠GFB−∠BFH=90°−∠GFB−∠CBF=∠NBA,
由BHFC是矩形可得HF=BC,
∵BC=AB,∴HF=AB,
在△ABN和△HFE中,,
∴△ABN≌△HFE,
∴NB=EF,
∵EF=GF,
∴NB=GF,
又∵NB∥GF,
∴NBFG是平行四边形,
∵EF=BF,∴NB=BF,
∴平行四边NBFG是菱形.
点睛:本题主要考查正方形的性质及全等三角形的判定和性质,矩形的判定与性质,菱形的判定等,作出辅助线是解决(1)的关键.在(2)中证得△ABN≌△HFE是解题的关键.
25、(1)作图见解析;(2)证明书见解析.
【解析】
(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.
(2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.
【详解】
解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.
(2)如图,延长DA至E,使得AE=CB,连结CE.
∵∠ACB +∠CAD =180°,∠DACDAC +∠EAC =180°,∴∠BACBCA =∠EAC.
在△EAC和△BAC中,AE=CE,AC=CA,∠EAC=∠BCN,
∴△AECEAC≌△BCA (SAS).∴∠B=∠E,AB=CE.
∵∠B=∠D,∴∠D=∠E.∴CD=CE,∴CD=AB.
考点:1.尺规作图;2.全等三角形的判定和性质.
26、
【解析】
分析:根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
详解:原式=
=
=
=
当时,原式==.
点睛:本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.
27、.
【解析】
试题分析:
试题解析:原式=
=
=
当x=时,原式=.
考点:分式的化简求值.
宁波市鄞州区市级名校2021-2022学年中考数学考前最后一卷含解析: 这是一份宁波市鄞州区市级名校2021-2022学年中考数学考前最后一卷含解析,共20页。
2021-2022学年陕西省岐山县市级名校中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年陕西省岐山县市级名校中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了下列计算正确的是,不等式组的解集是等内容,欢迎下载使用。
2021-2022学年拉萨市市级名校中考数学考前最后一卷含解析: 这是一份2021-2022学年拉萨市市级名校中考数学考前最后一卷含解析,共22页。试卷主要包含了函数的图象上有两点,,若,则,解分式方程﹣3=时,去分母可得等内容,欢迎下载使用。