2021-2022学年广西河池市宜州区中考数学最后一模试卷含解析
展开1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A.①②B.②③C.①③D.②④
2.下列几何体中,主视图和左视图都是矩形的是( )
A.B.C.D.
3.已知一组数据:12,5,9,5,14,下列说法不正确的是( )
A.平均数是9B.中位数是9C.众数是5D.极差是5
4.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=在同一坐标系中的图象可能是( )
A.B.C.D.
5.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于( )
A.132°B.134°C.136°D.138°
6.化简:-,结果正确的是( )
A.1B.C.D.
7.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=5 ,则∠B的度数是( )
A.30° B.45° C.50° D.60°
8.方程的解是
A.3B.2C.1D.0
9.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将 绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为( )
A.B.C.D.
10.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x2﹣2x+kb+1=0 的根的情况是( )
A.有两个不相等的实数根B.没有实数根
C.有两个相等的实数根D.有一个根是 0
二、填空题(本大题共6个小题,每小题3分,共18分)
11.不等式组的解集为________.
12.八位女生的体重(单位:kg)分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg.
13.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.
14.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.
15.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cs∠ADQ=.其中正确结论是_________.(填写序号)
16.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为
▲ 辆.
三、解答题(共8题,共72分)
17.(8分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?
18.(8分)先化简,再求值:1+÷(1﹣),其中x=2cs30°+tan45°.
19.(8分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.
20.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.
21.(8分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
22.(10分)(1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;
(2)先化简,再求值•(a2﹣b2),其中a=,b=﹣2.
23.(12分)解分式方程:
- =
24.如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.
(1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
故选C.
2、C
【解析】
主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
【详解】
A. 主视图为圆形,左视图为圆,故选项错误;
B. 主视图为三角形,左视图为三角形,故选项错误;
C. 主视图为矩形,左视图为矩形,故选项正确;
D. 主视图为矩形,左视图为圆形,故选项错误.
故答案选:C.
【点睛】
本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
3、D
【解析】
分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案
平均数为(12+5+9+5+14)÷5=9,故选项A正确;
重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;
5出现了2次,最多,∴众数是5,故选项C正确;
极差为:14﹣5=9,故选项D错误.
故选D
4、C
【解析】
根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.
【详解】
解:由二次函数的图像可知a0,c0,
∴正比例函数过二四象限,反比例函数过一三象限.
故选C.
【点睛】
本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.
5、B
【解析】
过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.
解:
过E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠C=∠FEC,∠BAE=∠FEA,
∵∠C=44°,∠AEC为直角,
∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
∴∠1=180°﹣∠BAE=180°﹣46°=134°,
故选B.
“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
6、B
【解析】
先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.
【详解】
【点睛】
本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.
7、D
【解析】
根据圆周角定理的推论,得∠B=∠D.根据直径所对的圆周角是直角,得∠ACD=90°.
在直角三角形ACD中求出∠D.
则sinD=
∠D=60°
∠B=∠D=60°.
故选D.
“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边.
8、A
【解析】
试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,
经检验x=3是分式方程的解.故选A.
9、B
【解析】
阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.
【详解】
解:由旋转可知AD=BD,
∵∠ACB=90°,AC=2,
∴CD=BD,
∵CB=CD,
∴△BCD是等边三角形,
∴∠BCD=∠CBD=60°,
∴BC=AC=2,
∴阴影部分的面积=2×2÷2−=2−.
故选:B.
【点睛】
本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算.
10、A
【解析】
判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.
【详解】
∵一次函数y=kx+b的图像经过第一、三、四象限
∴k>0, b<0
∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,
∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.
【点睛】
根的判别式
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x>1
【解析】
分别求出两个不等式的解集,再求其公共解集.
【详解】
,
解不等式①,得:x>1,
解不等式②,得:x>-3,
所以不等式组的解集为:x>1,
故答案为:x>1.
【点睛】
本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
12、1
【解析】
根据中位数的定义,结合图表信息解答即可.
【详解】
将这八位女生的体重重新排列为:35、36、38、38、40、42、42、45,
则这八位女生的体重的中位数为=1kg,
故答案为1.
【点睛】
本题考查了中位数,确定中位数的时候一定要先排好顺序,然后再根据个数是奇数或偶数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数.
13、1
【解析】
本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.
【详解】
解:设利润为w元,
则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,
∵10≤x≤20,
∴当x=1时,二次函数有最大值25,
故答案是:1.
【点睛】
本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.
14、3:2
【解析】
因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为: 3:2.
15、①②④
【解析】
①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;
②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;
③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;
④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cs∠ADQ的值.
【详解】
解:①连接OQ,OD,如图1.
易证四边形DOBP是平行四边形,从而可得DO∥BP.
结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,
则有DQ=DA=1.
故①正确;
②连接AQ,如图4.
则有CP=,BP=.
易证Rt△AQB∽Rt△BCP,
运用相似三角形的性质可求得BQ=,
则PQ=,
∴.
故②正确;
③过点Q作QH⊥DC于H,如图4.
易证△PHQ∽△PCB,
运用相似三角形的性质可求得QH=,
∴S△DPQ=DP•QH=××=.
故③错误;
④过点Q作QN⊥AD于N,如图3.
易得DP∥NQ∥AB,
根据平行线分线段成比例可得,
则有,
解得:DN=.
由DQ=1,得cs∠ADQ=.
故④正确.
综上所述:正确结论是①②④.
故答案为:①②④.
【点睛】
本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.
16、2.85×2.
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×20n,其中2≤|a|<20,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,-n为它第一个有效数字前0的个数(含小数点前的2个0).
【详解】
解:28500000一共8位,从而28500000=2.85×2.
三、解答题(共8题,共72分)
17、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.
【解析】
(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;
(2)设每套运动服的售价为y元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%” 即可列不等式求解.
【详解】
(1)设商场第一次购进x套运动服,由题意得
解这个方程,得
经检验,是所列方程的根
.
答:商场两次共购进这种运动服600套;
(2)设每套运动服的售价为y元,由题意得
,
解这个不等式,得
答:每套运动服的售价至少是200元.
【点睛】
此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解.
18、
【解析】
先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.
【详解】
原式=
=1+
=1+
=
当x=2cs30°+tan45°
=2×+1
=+1时.
=
【点睛】
本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.
19、(1)证明见解析;(2)BC=,AD=.
【解析】
分析:(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;
(2)证△BDE∽△BEC得,据此可求得BC的长度,再证△AOE∽△ABC得,据此可得AD的长.
详解:(1)如图,连接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠OBE=∠CBE,
∴∠OEB=∠CBE,
∴OE∥BC,
又∵∠C=90°,
∴∠AEO=90°,即OE⊥AC,
∴AC为⊙O的切线;
(2)∵ED⊥BE,
∴∠BED=∠C=90°,
又∵∠DBE=∠EBC,
∴△BDE∽△BEC,
∴,即,
∴BC=;
∵∠AEO=∠C=90°,∠A=∠A,
∴△AOE∽△ABC,
∴,即,
解得:AD=.
点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.
20、(1)60°;(2)证明略;(3)
【解析】
(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;
(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;
(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.
【详解】
(1)∵∠ABC与∠D都是弧AC所对的圆周角,
∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠BAC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,
∴AE是⊙O的切线;
(3)如图,连接OC,
∵OB=OC,∠ABC=60°,
∴△OBC是等边三角形,
∴OB=BC=4,∠BOC=60°,
∴∠AOC=120°,
∴劣弧AC的长为==.
【点睛】
本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.
21、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.
【解析】
(1)根据单价乘以数量,可得利润,可得答案.
(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.
(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.
【详解】
(1)当1≤x<50时,,
当50≤x≤90时,,
综上所述:.
(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,
当x=45时,y最大=-2×452+180×45+2000=6050,
当50≤x≤90时,y随x的增大而减小,
当x=50时,y最大=6000,
综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.
(3)解,结合函数自变量取值范围解得,
解,结合函数自变量取值范围解得
所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.
【点睛】
本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.
22、 (1)-2 (2)-
【解析】
试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;
(2)先把和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值.
解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1
=2﹣2×+1﹣3
=2﹣+1﹣3
=﹣2;
(2)•(a2﹣b2)
=•(a+b)(a﹣b)
=a+b,
当a=,b=﹣2时,原式=+(﹣2)=﹣.
23、方程无解
【解析】
找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,再代入最简公分母进行检验即可.
【详解】
解:方程的两边同乘(x+1)(x−1),
得:,
,
∴此方程无解
【点睛】
本题主要考查了解分式方程,解分式方程的步骤:①去分母;②解整式方程;③验根.
24、(1)8m2;(2)68m2;(3) 40,8
【解析】
(1)根据中心对称图形性质和,,,可得,即可解当时,4个全等直角三角形的面积;
(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,,,求出自变量的取值范围,再根据二次函数的增减性即可解答;
(3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.
【详解】
(1) ∵为长方形和菱形的对称中心,,∴
∵,,∴
∴当时,,
(2)∵,
∴-,
∵,,
∴解不等式组得,
∵,结合图像,当时,随的增大而减小.
∴当时, 取得最大值为
(3)∵当时,SⅠ=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.
【点睛】
本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.
时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销量(件)
200-2x
甲
乙
丙
单价(元/米2)
广西河池市宜州区2024年九年级中考数学一模试题: 这是一份广西河池市宜州区2024年九年级中考数学一模试题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年广西河池市宜州区部分校联考中考一模数学试题(含解析): 这是一份2023年广西河池市宜州区部分校联考中考一模数学试题(含解析),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年广西河池市宜州区部分校联考中考数学一模试卷(含解析): 这是一份2023年广西河池市宜州区部分校联考中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。