


2021-2022学年海南省三亚华侨校中考数学模拟精编试卷含解析
展开
这是一份2021-2022学年海南省三亚华侨校中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如果将直线l1,如图所示的几何体的俯视图是,已知,下列说法中,不正确的是,下列各数是不等式组的解是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知函数y=的图象如图,当x≥﹣1时,y的取值范围是( )
A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥0
2.下列交通标志是中心对称图形的为( )
A. B. C. D.
3.下列计算正确的是( )
A.(﹣2a)2=2a2 B.a6÷a3=a2
C.﹣2(a﹣1)=2﹣2a D.a•a2=a2
4.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是( )
A.将l1向左平移2个单位 B.将l1向右平移2个单位
C.将l1向上平移2个单位 D.将l1向下平移2个单位
5.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为( )米.
A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×106
6.如图所示的几何体的俯视图是( )
A. B. C. D.
7.已知,下列说法中,不正确的是( )
A. B.与方向相同
C. D.
8.下列各数是不等式组的解是( )
A.0 B. C.2 D.3
9.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是( )
A.我爱美 B.宜晶游 C.爱我宜昌 D.美我宜昌
10.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx-k的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(共7小题,每小题3分,满分21分)
11.已知边长为5的菱形中,对角线长为6,点在对角线上且,则的长为__________.
12.若正n边形的内角为,则边数n为_____________.
13.如图,在中,.的半径为2,点是边上的动点,过点作的一条切线(点为切点),则线段长的最小值为______.
14.如图,AC是以AB为直径的⊙O的弦,点D是⊙O上的一点,过点D作⊙O的切线交直线AC于点E,AD平分∠BAE,若AB=10,DE=3,则AE的长为_____.
15.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.
16.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=_____.
17.化简:= __________.
三、解答题(共7小题,满分69分)
18.(10分)如图,在△ABC中,∠ABC=90°.
(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)
(2)判断(1)中AC与⊙O的位置关系,直接写出结果.
19.(5分)计算
20.(8分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.
21.(10分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)
22.(10分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m= .半圆D与数轴有两个公共点,设另一个公共点是C.
①直接写出m的取值范围是 .
②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.
23.(12分)已知点P,Q为平面直角坐标系xOy中不重合的两点,以点P为圆心且经过点Q作⊙P,则称点Q为⊙P的“关联点”,⊙P为点Q的“关联圆”.
(1)已知⊙O的半径为1,在点E(1,1),F(﹣,),M(0,-1)中,⊙O的“关联点”为______;
(2)若点P(2,0),点Q(3,n),⊙Q为点P的“关联圆”,且⊙Q的半径为,求n的值;
(3)已知点D(0,2),点H(m,2),⊙D是点H的“关联圆”,直线y=﹣x+4与x轴,y轴分别交于点A,B.若线段AB上存在⊙D的“关联点”,求m的取值范围.
24.(14分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题分析:根据反比例函数的性质,再结合函数的图象即可解答本题.解:根据反比例函数的性质和图象显示可知:此函数为减函数,x≥-1时,在第三象限内y的取值范围是y≤-1;在第一象限内y的取值范围是y>1.故选C.
考点:本题考查了反比例函数的性质
点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要注意分析反比例函数的基本性质和知识,反比例函数y=的图象是双曲线,当k>1时,图象在一、三象限,在每个象限内y随x的增大而减小;当k<1时,图象在二、四象限,在每个象限内,y随x的增大而增大
2、C
【解析】
根据中心对称图形的定义即可解答.
【详解】
解:A、属于轴对称图形,不是中心对称的图形,不合题意;
B、是中心对称的图形,但不是交通标志,不符合题意;
C、属于轴对称图形,属于中心对称的图形,符合题意;
D、不是中心对称的图形,不合题意.
故选C.
【点睛】
本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.
3、C
【解析】
解:选项A,原式=;
选项B,原式=a3;
选项C,原式=-2a+2=2-2a;
选项D, 原式=
故选C
4、C
【解析】
根据“上加下减”的原则求解即可.
【详解】
将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.
故选:C.
【点睛】
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
5、C
【解析】
423公里=423 000米=4.23×105米.
故选C.
6、D
【解析】
试题分析:根据俯视图的作法即可得出结论.
从上往下看该几何体的俯视图是D.故选D.
考点:简单几何体的三视图.
7、A
【解析】
根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.
【详解】
A、,故该选项说法错误
B、因为,所以与的方向相同,故该选项说法正确,
C、因为,所以,故该选项说法正确,
D、因为,所以;故该选项说法正确,
故选:A.
【点睛】
本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.
8、D
【解析】
求出不等式组的解集,判断即可.
【详解】
,
由①得:x>-1,
由②得:x>2,
则不等式组的解集为x>2,即3是不等式组的解,
故选D.
【点睛】
此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
9、C
【解析】
试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.
考点:因式分解.
10、B
【解析】
试题分析:当x1<x2<0时,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函数y=kx﹣k的图象经过第一、三、四象限,所以不经过第二象限,故答案选B.
考点:反比例函数图象上点的坐标特征;一次函数图象与系数的关系.
二、填空题(共7小题,每小题3分,满分21分)
11、3或1
【解析】
菱形ABCD中,边长为1,对角线AC长为6,由菱形的性质及勾股定理可得AC⊥BD,BO=4,分当点E在对角线交点左侧时(如图1)和当点E在对角线交点左侧时(如图2)两种情况求BE得长即可.
【详解】
解:当点E在对角线交点左侧时,如图1所示:
∵菱形ABCD中,边长为1,对角线AC长为6,
∴AC⊥BD,BO= =4,
∵tan∠EAC=,
解得:OE=1,
∴BE=BO﹣OE=4﹣1=3,
当点E在对角线交点左侧时,如图2所示:
∵菱形ABCD中,边长为1,对角线AC长为6,
∴AC⊥BD,BO==4,
∵tan∠EAC=,
解得:OE=1,
∴BE=BO﹣OE=4+1=1,
故答案为3或1.
【点睛】
本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长.
12、9
【解析】
分析:
根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可.
详解:
由题意可得:140n=180(n-2),
解得:n=9.
故答案为:9.
点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).
13、
【解析】
连接,根据勾股定理知,可得当时,即线段最短,然后由勾股定理即可求得答案.
【详解】
连接.
∵是的切线,
∴;
∴,
∴当时,线段OP最短,
∴PQ的长最短,
∵在中,,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,得到时,线段最短是关键.
14、1或9
【解析】
(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示
∵OD=OA,
∴∠OAD=∠ODA,
∵AD平分∠BAE,
∴∠OAD=∠ODA=∠DAC,
∴OD//AE,
∵DE是圆的切线,
∴DE⊥OD,
∴∠ODE=∠E=90o,
∴四边形ODEF是矩形,
∴OF=DE,EF=OD=5,
又∵OF⊥AC,
∴AF=,
∴AE=AF+EF=5+4=9.
(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示
同(1)可得:EF=OD=5,OF=DE=3,
在直角三角形AOF中,AF=,
∴AE=EF-AF=5-4=1.
15、
【解析】
首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.
【详解】
解:
连接AC
AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,
∴AC=CB,BC2+AC2=AB2,
∴∠BCA=90°,
∴∠ABC=45°,
∴∠ABC的正弦值为.
故答案为:.
【点睛】
此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.
16、﹣1
【解析】
根据一元二次方程的解的定义把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=−1,然后利用整体代入的方法进行计算.
【详解】
∵1(n≠0)是关于x的一元二次方程x1+mx+1n=0的一个根,
∴4+1m+1n=0,
∴n+m=−1,
故答案为−1.
【点睛】
本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
17、a+b
【解析】
将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
【详解】
解:原式=
=
=
=a+b
【点睛】
此题主要考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
三、解答题(共7小题,满分69分)
18、(1)见解析(2)相切
【解析】
(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即
可;
(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.
【详解】
(1)如图所示:
;
(2)相切;过O点作OD⊥AC于D点,
∵CO平分∠ACB,
∴OB=OD,即d=r,
∴⊙O与直线AC相切,
【点睛】
此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,
正确利用角平分线的性质求出d=r是解题关键.
19、
【解析】
先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.
【详解】
原式=,
=,
=,
=.
【点睛】
本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.
20、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.
【解析】
试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;
(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.
(1)把x=-1代入得1+m-2=1,解得m=1
∴2--2=1.
∴
∴另一根是2;
(2)∵,
∴方程①有两个不相等的实数根.
考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程
点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根
21、见解析
【解析】
试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
试题解析:
探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
∴△BCE≌△DCG(SAS),
∴BE=DG.
应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,
∴S△CDE= ,
∴S△ECG=S△CDE+S△CDG=10
∴S菱形CEFG=2S△ECG=20.
22、(1);(2)①;②△AOB与半圆D的公共部分的面积为;(3)tan∠AOB的值为或.
【解析】
(1)根据题意由勾股定理即可解答
(2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可
②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答
(3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
【详解】
(1)当半圆与数轴相切时,AB⊥OB,
由勾股定理得m= ,
故答案为 .
(2)①∵半圆D与数轴相切时,只有一个公共点,此时m=,
当O、A、B三点在数轴上时,m=7+4=11,
∴半圆D与数轴有两个公共点时,m的取值范围为.
故答案为.
②如图,连接DC,当BC=2时,
∵BC=CD=BD=2,
∴△BCD为等边三角形,
∴∠BDC=60°,
∴∠ADC=120°,
∴扇形ADC的面积为 ,
,
∴△AOB与半圆D的公共部分的面积为 ;
(3)如图1,
当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4+x)2=42﹣x2,
解得x= ,OH= ,AH= ,
∴tan∠AOB=,
如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,
设BH=x,则72﹣(4﹣x)2=42﹣x2,
解得x= ,OH=,AH=,
∴tan∠AOB=.
综合以上,可得tan∠AOB的值为或.
【点睛】
此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线
23、(1)F,M;(1)n=1或﹣1;(3)≤m≤或 ≤m≤.
【解析】
(1)根据定义,认真审题即可解题,
(1)在直角三角形PHQ中勾股定理解题即可,
(3)当⊙D与线段AB相切于点T时,由sin∠OBA=,得DT=DH1=,进而求出m1=即可,②当⊙D过点A时,连接AD.由勾股定理得DA==DH1=即可解题.
【详解】
解:(1)∵OF=OM=1,
∴点F、点M在⊙上,
∴F、M是⊙O的“关联点”,
故答案为F,M.
(1)如图1,过点Q作QH⊥x轴于H.
∵PH=1,QH=n,PQ=.
∴由勾股定理得,PH1+QH1=PQ1,
即11+n1=()1,
解得,n=1或﹣1.
(3)由y=﹣x+4,知A(3,0),B(0,4)
∴可得AB=5
①如图1(1),当⊙D与线段AB相切于点T时,连接DT.
则DT⊥AB,∠DTB=90°
∵sin∠OBA=,
∴可得DT=DH1=,
∴m1=,
②如图1(1),当⊙D过点A时,连接AD.
由勾股定理得DA==DH1=.
综合①②可得:≤m≤或 ≤m≤.
【点睛】
本题考查圆的新定义问题, 三角函数和勾股定理的应用,难度较大,分类讨论,迁移知识理解新定义是解题关键.
24、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案.
【解析】
(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.
【详解】
解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,
x=15,
经检验x=15是原方程的解.
∴40﹣x=1.
甲,乙两种玩具分别是15元/件,1元/件;
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,
,
解得20≤y<2.
因为y是整数,甲种玩具的件数少于乙种玩具的件数,
∴y取20,21,22,23,
共有4种方案.
考点:分式方程的应用;一元一次不等式组的应用.
相关试卷
这是一份江西省南昌育华校2021-2022学年中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角尺,-5的相反数是等内容,欢迎下载使用。
这是一份海南省三亚华侨校2021-2022学年中考数学对点突破模拟试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,-sin60°的倒数为等内容,欢迎下载使用。
这是一份海南省临高县美台中学2021-2022学年中考数学模拟精编试卷含解析,共16页。试卷主要包含了计算的值为,下列事件中,必然事件是等内容,欢迎下载使用。