2021-2022学年海南省三亚市妙联学校中考数学适应性模拟试题含解析
展开
这是一份2021-2022学年海南省三亚市妙联学校中考数学适应性模拟试题含解析,共20页。试卷主要包含了已知,下列说法中,不正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )
A. B.
C. D.
2.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则( )
A.m≠±2 B.m=2 C.m=–2 D.m≠2
3.如图,在正方形网格中建立平面直角坐标系,若,,则点C的坐标为( )
A. B. C. D.
4.下列四个多项式,能因式分解的是( )
A.a-1 B.a2+1
C.x2-4y D.x2-6x+9
5.二次函数的图象如图所示,则下列各式中错误的是( )
A.abc>0 B.a+b+c>0 C.a+c>b D.2a+b=0
6.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )
A. B. C. D.
7.已知⊙O的半径为13,弦AB∥CD,AB=24,CD=10,则四边形ACDB的面积是( )
A.119 B.289 C.77或119 D.119或289
8.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为( )
A.20° B.30° C.45° D.50°
9.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交
AB于G,连接DG,现在有如下4个结论:①≌;②;③∠GDE=45°;④
DG=DE在以上4个结论中,正确的共有( )个
A.1个 B.2 个 C.3 个 D.4个
10.已知,下列说法中,不正确的是( )
A. B.与方向相同
C. D.
11.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是( )
A.平均数 B.标准差 C.中位数 D.众数
12.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )
A.x<-2或x>2 B.x<-2或0<x<2
C.-2<x<0或0<x<2 D.-2<x<0或x>2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于__(结果用、的线性组合表示).
14.不等式组的解集是 ▲ .
15.如图,在直角坐标系中,⊙A的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是______________.
16.关于x的不等式组的整数解共有3个,则a的取值范围是_____.
17.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.
18.因式分解:3a3﹣3a=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.
(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);
(2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?
20.(6分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)求扇形统计图中C所对圆心角的度数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
21.(6分)先化简,再求值:(1﹣)÷,其中x是不等式组的整数解
22.(8分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.
(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?
(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?
23.(8分)如图,△ABC与△A1B1C1是位似图形.
(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;
(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;
(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.
24.(10分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.
(1)求反比例函数y=的表达式;
(2)在x轴上是否存在一点P,使得S△AOP=S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.
25.(10分)先化简,再求值÷(x﹣),其中x=.
26.(12分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.
小明和小刚都在本周日上午去游玩的概率为________;
求他们三人在同一个半天去游玩的概率.
27.(12分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.
请根据图表信息回答下列问题:
视力
频数(人)
频率
4.0≤x<4.3
20
0.1
4.3≤x<4.6
40
0.2
4.6≤x<4.9
70
0.35
4.9≤x<5.2
a
0.3
5.2≤x<5.5
10
b
(1)本次调查的样本为 ,样本容量为 ;在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.
【详解】
解:设CD的长为与正方形DEFG重合部分图中阴影部分的面积为
当C从D点运动到E点时,即时,.
当A从D点运动到E点时,即时,,
与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.
故选A.
【点睛】
本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.
2、D
【解析】
试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.
故选D
3、C
【解析】
根据A点坐标即可建立平面直角坐标.
【详解】
解:由A(0,2),B(1,1)可知原点的位置,
建立平面直角坐标系,如图,
∴C(2,-1)
故选:C.
【点睛】
本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.
4、D
【解析】
试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
试题解析:x2-6x+9=(x-3)2.
故选D.
考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
5、B
【解析】
根据二次函数的图象与性质逐一判断即可.
【详解】
解:由图象可知抛物线开口向上,
∴,
∵对称轴为,
∴,
∴,
∴,故D正确,
又∵抛物线与y轴交于y轴的负半轴,
∴,
∴,故A正确;
当x=1时,,
即,故B错误;
当x=-1时,
即,
∴,故C正确,
故答案为:B.
【点睛】
本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.
6、A
【解析】
试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,
∴这个斜坡的水平距离为:=10m,
∴这个斜坡的坡度为:50:10=5:1.
故选A.
点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.
7、D
【解析】
分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.
【详解】
解:①当弦AB和CD在圆心同侧时,如图1,
∵AB=24cm,CD=10cm,
∴AE=12cm,CF=5cm,
∴OA=OC=13cm,
∴EO=5cm,OF=12cm,
∴EF=12-5=7cm;
∴四边形ACDB的面积
②当弦AB和CD在圆心异侧时,如图2,
∵AB=24cm,CD=10cm,
∴.AE=12cm,CF=5cm,
∵OA=OC=13cm,
∴EO=5cm,OF=12cm,
∴EF=OF+OE=17cm.
∴四边形ACDB的面积
∴四边形ACDB的面积为119或289.
故选:D.
【点睛】
本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.
8、D
【解析】
根据两直线平行,内错角相等计算即可.
【详解】
因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.
【点睛】
本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.
9、C
【解析】
【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定△ADG≌△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,根据全等三角形性质可求得∠GDE==45〫,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断④是错误的.
【详解】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,
∴∠DFG=∠A=90°,
∴△ADG≌△FDG,①正确;
∵正方形边长是12,
∴BE=EC=EF=6,
设AG=FG=x,则EG=x+6,BG=12﹣x,
由勾股定理得:EG2=BE2+BG2,
即:(x+6)2=62+(12﹣x)2,
解得:x=4
∴AG=GF=4,BG=8,BG=2AG,②正确;
∵△ADG≌△FDG,△DCE≌△DFE,
∴∠ADG=∠FDG,∠FDE=∠CDE
∴∠GDE==45〫.③正确;
BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,④错误;
∴正确说法是①②③
故选:C
【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,有一定的难度.
10、A
【解析】
根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.
【详解】
A、,故该选项说法错误
B、因为,所以与的方向相同,故该选项说法正确,
C、因为,所以,故该选项说法正确,
D、因为,所以;故该选项说法正确,
故选:A.
【点睛】
本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.
11、B
【解析】
试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:
设样本A中的数据为xi,则样本B中的数据为yi=xi+2,
则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.
故选B.
考点:统计量的选择.
12、D
【解析】
先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.
【详解】
解:∵反比例函数与正比例函数的图象均关于原点对称,
∴A、B两点关于原点对称,
∵点A的横坐标为1,∴点B的横坐标为-1,
∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,
∴当y1>y1时,x的取值范围是-1<x<0或x>1.
故选:D.
【点睛】
本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据三角形法则求出即可解决问题;
【详解】
如图,
∵=, =,
∴=+=-,
∵BD=BC,
∴=.
故答案为.
【点睛】
本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
14、﹣1<x≤1
【解析】
解一元一次不等式组.
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,
解第一个不等式得,x>﹣1,
解第二个不等式得,x≤1,
∴不等式组的解集是﹣1<x≤1.
15、2
【解析】
分析:因为BP=,AB的长不变,当PA最小时切线长PB最小,所以点P是过点A向直线l所作垂线的垂足,利用△APC≌△DOC求出AP的长即可求解.
详解:如图,作AP⊥直线y=x+3,垂足为P,此时切线长PB最小,设直线与x轴,y轴分别交于D,C.
∵A的坐标为(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,
∴DC==5,∴AC=DC,
在△APC与△DOC中,
∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,
∴△APC≌△DOC,∴AP=OD=3,
∴PB==2.
故答案为2.
点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.
16、
【解析】
首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解:由不等式①得:x>a,由不等式②得:x<1,所以不等式组的解集是a<x<1.
∵关于x的不等式组的整数解共有3个,∴3个整数解为0,﹣1,﹣2,∴a的取值范围是﹣3≤a<﹣2.
故答案为:﹣3≤a<﹣2.
【点睛】
本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
17、8。
【解析】根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论:
由函数图象得:进水管每分钟的进水量为:20÷4=5升。
设出水管每分钟的出水量为a升,由函数图象,得,解得:。
∴关闭进水管后出水管放完水的时间为:(分钟)。
18、3a(a+1)(a﹣1).
【解析】
首先提取公因式3a,进而利用平方差公式分解因式得出答案.
【详解】
解:原式=3a(a2﹣1)
=3a(a+1)(a﹣1).
故答案为3a(a+1)(a﹣1).
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=0.8x﹣60(0≤x≤200)(2)159份
【解析】
解:(1)y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)=0.8x﹣60(0≤x≤200).
(2)根据题意得:30(0.8x﹣60)≥2000,解得x≥.
∴小丁每天至少要买159份报纸才能保证每月收入不低于2000元.
(1)因为小丁每天从某市报社以每份0.5元买出报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,所以如果小丁平均每天卖出报纸x份,纯收入为y元,则y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)即y=0.8x﹣60,其中0≤x≤200且x为整数.
(2)因为每月以30天计,根据题意可得30(0.8x﹣60)≥2000,解之求解即可.
20、(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72°;(4).
【解析】
试题分析:(1)用B的频数除以B所占的百分比即可求得结论;
(2)分别求得C的频数及其所占的百分比即可补全统计图;
(3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;
(4)列出树形图即可求得结论.
试题解析:(1)60÷10%=600(人).
答:本次参加抽样调查的居民有600人.
(2)如图;
(3),360°×(1-10%-30%-40%)=72°.
(4)如图;
(列表方法略,参照给分).
P(C粽)=.
答:他第二个吃到的恰好是C粽的概率是.
考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.
21、x=3时,原式=
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.
【详解】
解:原式=÷
=×
=,
解不等式组得,2<x<,
∵x取整数,
∴x=3,
当x=3时,原式=.
【点睛】
本题主要考查分式额化简求值及一元一次不等式组的整数解.
22、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析
【解析】
分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;
(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.
详解:
(1)乘公交车所占的百分比=,
调查的样本容量50÷=300人,
骑自行车的人数300×=100人,
骑自行车的人数多,多100﹣50=50人;
(2)全校骑自行车的人数2400×=800人,
800>600,
故学校准备的600个自行车停车位不足够.
点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
23、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)
【解析】
分析:(1)直接利用已知点位置得出B点坐标即可;
(2)直接利用位似图形的性质得出对应点位置进而得出答案;
(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.
详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);
故答案为(﹣2,﹣5);
(2)如图所示:△AB2C2,即为所求;
(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.
故答案为6+4.
点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.
24、(1)y=;(1)(﹣1,0)或(1,0)
【解析】
(1)把A的坐标代入反比例函数的表达式,即可求出答案;
(1)求出∠A=60°,∠B=30°,求出线段OA和OB,求出△AOB的面积,根据已知S△AOPS△AOB,求出OP长,即可求出答案.
【详解】
(1)把A(,1)代入反比例函数y得:k=1,所以反比例函数的表达式为y;
(1)∵A(,1),OA⊥AB,AB⊥x轴于C,∴OC,AC=1,OA1.
∵tanA,∴∠A=60°.
∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=1OC=1,∴S△AOBOA•OB1×1.
∵S△AOPS△AOB,∴OP×AC.
∵AC=1,∴OP=1,∴点P的坐标为(﹣1,0)或(1,0).
【点睛】
本题考查了用待定系数法求反比例函数的解析式,三角形的面积,解直角三角形等知识点,求出反比例函数的解析式和求出△AOB的面积是解答此题的关键.
25、6
【解析】
【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.
【详解】原式=
=
=,
当x=,原式==6.
【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.
26、(1);(2)
【解析】
(1)根据题意,画树状图列出三人随机选择上午或下午去游玩的所有等可能结果,找到小明和小刚都在本周日上午去游玩的结果,根据概率公式计算可得;
(2)由(1)中树状图,找到三人在同一个半天去游玩的结果,根据概率公式计算可得.
【详解】
解:(1)根据题意,画树状图如图:
由树状图可知,三人随机选择本周日的上午或下午去游玩共有8种等可能结果,其中小明和小刚都在本周日上午去游玩的结果有(上,上,上)、(上,上,下)2种,∴小明和小刚都在本周日上午去游玩的概率为=;
(2)由(1)中树状图可知,他们三人在同一个半天去游玩的结果有(上,上,上)、(下,下,下)这2种,
∴他们三人在同一个半天去游玩的概率为=.
答:他们三人在同一个半天去游玩的概率是.
【点睛】
本题考查的是用列表法或树状图法求概率.注意列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
27、200名初中毕业生的视力情况 200 60 0.05
【解析】
(1)根据视力在4.0≤x<4.3范围内的频数除以频率即可求得样本容量;
(2)根据样本容量,根据其对应的已知频率或频数即可求得a,b的值;
(3)求出样本中视力正常所占百分比乘以5000即可得解.
【详解】
(1)根据题意得:20÷0.1=200,即本次调查的样本容量为200,
故答案为200;
(2)a=200×0.3=60,b=10÷200=0.05,
补全频数分布图,如图所示,
故答案为60,0.05;
(3)根据题意得:5000×=3500(人),
则全区初中毕业生中视力正常的学生有估计有3500人.
相关试卷
这是一份2023-2024学年海南省三亚市妙联学校九上数学期末学业水平测试试题含答案,共8页。试卷主要包含了方程x2﹣3x=0的根是等内容,欢迎下载使用。
这是一份2023-2024学年海南省三亚市妙联学校数学八年级第一学期期末检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下面计算正确的是,下列各数中,是无理数的是,9的算术平方根是,已知等内容,欢迎下载使用。
这是一份海南省三亚市妙联学校2022-2023学年七年级数学第二学期期末质量检测模拟试题含答案,共7页。试卷主要包含了如图是一次函数等内容,欢迎下载使用。