2021-2022学年合肥市蜀山区重点达标名校中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.下列各数中是有理数的是( )
A.π B.0 C. D.
2.下列各数中负数是( )
A.﹣(﹣2) B.﹣|﹣2| C.(﹣2)2 D.﹣(﹣2)3
3.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适( )
A.甲 B.乙 C.丙 D.丁
4.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是( )
A. B.
C. D.
5.若=1,则符合条件的m有( )
A.1个 B.2个 C.3个 D.4个
6.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于( )
A.30° B.35° C.40° D.50°
7.下列说法正确的是( )
A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近
8.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是
A.有两个相等的实数根 B.有两个异号的实数根
C.有两个不相等的实数根 D.没有实数根
9.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )
A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC
10.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )
A.五丈 B.四丈五尺 C.一丈 D.五尺
二、填空题(本大题共6个小题,每小题3分,共18分)
11.设、是一元二次方程的两实数根,则的值为 .
12.已知一纸箱中,装有5个只有颜色不同的球,其中2个白球,3个红球,若往原纸箱中再放入x个白球,然后从箱中随机取出一个白球的概率是,则x的值为_____
13.如图,BC=6,点A为平面上一动点,且∠BAC=60°,点O为△ABC的外心,分别以AB、AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE、CD交于点P,则OP的最小值是_____
14.分解因式:2x2﹣8xy+8y2= .
15.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.
16.A.如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条.
B.用计算器计算:•tan63°27′≈_____(精确到0.01).
三、解答题(共8题,共72分)
17.(8分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):
②A、B两班学生测试成绩在80≤x<90这一组的数据如下:
A班:80 80 82 83 85 85 86 87 87 87 88 89 89
B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89
③A、B两班学生测试成绩的平均数、中位数、方差如下:
平均数
中位数
方差
A班
80.6
m
96.9
B班
80.8
n
153.3
根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).
18.(8分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.
(1)求证:PC是⊙O的切线;
(2)设OP=AC,求∠CPO的正弦值;
(3)设AC=9,AB=15,求d+f的取值范围.
19.(8分)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“确定圆”.如图为点A,B的“确定圆”的示意图.
(1)已知点A的坐标为(-1,0),点B的坐标为(3,3),则点A,B的“确定圆”的面积为______;
(2)已知点A的坐标为(0,0),若直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;
(3)已知点A在以P(m,0)为圆心,以1为半径的圆上,点B在直线上,若要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.
20.(8分)小王是“新星厂”的一名工人,请你阅读下列信息:
信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;
信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
生产甲产品数(件)
生产乙产品数(件)
所用时间(分钟)
10
10
350
30
20
850
信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.
信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;
(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?
21.(8分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.
该同学从5个项目中任选一个,恰好是田赛项目的概率为______;
该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
22.(10分)如图,在矩形ABCD中,E是边BC上的点,AE=BC, DF⊥AE,垂足为F,连接DE.
求证:AB=DF.
23.(12分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:
(1)直线DC是⊙O的切线;
(2)AC2=2AD•AO.
24.如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.
【详解】A、π是无限不循环小数,属于无理数,故本选项错误;
B、0是有理数,故本选项正确;
C、是无理数,故本选项错误;
D、是无理数,故本选项错误,
故选B.
【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.
2、B
【解析】
首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.
【详解】
A、-(-2)=2,是正数;
B、-|-2|=-2,是负数;
C、(-2)2=4,是正数;
D、-(-2)3=8,是正数.
故选B.
【点睛】
此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.
3、A
【解析】
根据方差的概念进行解答即可.
【详解】
由题意可知甲的方差最小,则应该选择甲.
故答案为A.
【点睛】
本题考查了方差,解题的关键是掌握方差的定义进行解题.
4、B
【解析】
根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.
【详解】
分四种情况:
①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;
②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;
③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;
④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.
故选B.
【点睛】
此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
5、C
【解析】
根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.
【详解】
=1
m2-9=0或m-2= 1
即m= 3或m=3,m=1
m有3个值
故答案选C.
【点睛】
本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.
6、C
【解析】
试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.
考点:平行线的性质.
7、D
【解析】
根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.
【详解】
解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;
B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;
C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;
D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;
故选D
【点睛】
本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
8、A
【解析】
根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.
【详解】
∵函数的顶点的纵坐标为4,
∴直线y=4与抛物线只有一个交点,
∴方程ax2+bx+c﹣4=0有两个相等的实数根,
故选A.
【点睛】
本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.
9、D
【解析】
解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,
∴AE∥BC,故C选项正确,
∴∠EAC=∠C,故B选项正确,
∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,
故选D.
【点睛】
本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.
10、B
【解析】
【分析】根据同一时刻物高与影长成正比可得出结论.
【详解】设竹竿的长度为x尺,
∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,
∴,
解得x=45(尺),
故选B.
【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、27
【解析】
试题分析:根据一元二次方程根与系数的关系,可知+=5,·=-1,因此可知=-2=25+2=27.
故答案为27.
点睛:此题主要考查了一元二次方程根与系数的关系,解题时灵活运用根与系数的关系:,,确定系数a,b,c的值代入求解,然后再通过完全平方式变形解答即可.
12、1.
【解析】
先根据概率公式得到,解得.
【详解】
根据题意得,
解得.
故答案为:.
【点睛】
本题考查了概率公式:随机事件的概率事件可能出现的结果数除以所有可能出现的结果数.
13、
【解析】
试题分析:如图,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴点P在以BC为直径的圆上,∵外心为O,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=,所以OP的最小值是.故答案为.
考点:1.三角形的外接圆与外心;2.全等三角形的判定与性质.
14、1(x﹣1y)1
【解析】
试题分析:1x1﹣8xy+8y1
=1(x1﹣4xy+4y1)
=1(x﹣1y)1.
故答案为:1(x﹣1y)1.
考点:提公因式法与公式法的综合运用
15、60°
【解析】
试题解析:∵∠ACB=90°,∠ABC=30°,
∴∠A=90°-30°=60°,
∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,
∴AC=A′C,
∴△A′AC是等边三角形,
∴∠ACA′=60°,
∴旋转角为60°.
故答案为60°.
16、20 5.1
【解析】
A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;
B、利用计算器计算可得.
【详解】
A、根据题意,此正多边形的边数为360°÷45°=8,
则这个正多边形对角线的条数一共有=20,
故答案为20;
B、•tan63°27′≈2.646×2.001≈5.1,
故答案为5.1.
【点睛】
本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.
三、解答题(共8题,共72分)
17、(1)见解析;(2)m=81,n=85;(3)略.
【解析】
(1)先求出B班人数,根据两班人数相同可求出A班70≤x<80组的人数,补全统计图即可;
(2)根据中位数的定义求解即可;
(3)可以从中位数和方差的角度分析,合理即可.
【详解】
解:(1)A、B两班学生人数=5+2+3+22+8=40人,
A班70≤x<80组的人数=40-1-7-13-9=10人,
A、B两班学生数学成绩频数分布直方图如下:
(2)根据中位数的定义可得:m==81,n==85;
(3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;
从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.
【点睛】
本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.
18、(1)详见解析;(2);(3)
【解析】
(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;
(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;
(3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.
【详解】
(1)连接OC,
∵OA=OC,
∴∠A=∠OCA,
∵AC∥OP,
∴∠A=∠BOP,∠ACO=∠COP,
∴∠COP=∠BOP,
∵PB是⊙O的切线,AB是⊙O的直径,
∴∠OBP=90°,
在△POC与△POB中,
,
∴△COP≌△BOP,
∴∠OCP=∠OBP=90°,
∴PC是⊙O的切线;
(2)过O作OD⊥AC于D,
∴∠ODC=∠OCP=90°,CD=AC,
∵∠DCO=∠COP,
∴△ODC∽△PCO,
∴,
∴CD•OP=OC2,
∵OP=AC,
∴AC=OP,
∴CD=OP,
∴OP•OP=OC2
∴,
∴sin∠CPO=;
(3)连接BC,
∵AB是⊙O的直径,
∴AC⊥BC,
∵AC=9,AB=1,
∴BC==12,
当CM⊥AB时,
d=AM,f=BM,
∴d+f=AM+BM=1,
当M与B重合时,
d=9,f=0,
∴d+f=9,
∴d+f的取值范围是:9≤d+f≤1.
【点睛】
本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.
19、(1)25π;(2)点B的坐标为或;(3)m≤-5或m≥2
【解析】
(1)根据勾股定理,可得AB的长,根据圆的面积公式,可得答案;
(2)根据确定圆,可得l与⊙A相切,根据圆的面积,可得AB的长为3,根据等腰直角三角形的性质,可得,可得答案;
(3)根据圆心与直线垂直时圆心到直线的距离最短,根据确定圆的面积,可得PB的长,再根据30°的直角边等于斜边的一半,可得CA的长.
【详解】
(1)(1)∵A的坐标为(−1,0),B的坐标为(3,3),
∴AB==5,
根据题意得点A,B的“确定圆”半径为5,
∴S圆=π×52=25π.
故答案为25π;
(2)∵直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积
为9π,
∴⊙A的半径AB=3且直线y=x+b与⊙A相切于点B,如图,
∴AB⊥CD,∠DCA=45°.
,
①当b>0时,则点B在第二象限.
过点B作BE⊥x轴于点E,
∵在Rt△BEA中,∠BAE=45°,AB=3,
∴.
∴.
②当b<0时,则点B'在第四象限.
同理可得.
综上所述,点B的坐标为或.
(3)如图2,
,
直线当y=0时,x=3,即C(3,0).
∵tan∠BCP=,
∴∠BCP=30°,
∴PC=2PB.
P到直线的距离最小是PB=4,
∴PC=1.
3-1=-5,P1(-5,0),
3+1=2,P(2,0),
当m≤-5或m≥2时,PD的距离大于或等于4,点A,B的“确定圆”的面积都不小于9π.
点A,B的“确定圆”的面积都不小于9π,m的范围是m≤-5或m≥2.
【点睛】
本题考查了一次函数综合题,解(1)的关键是利用勾股定理得出AB的长;解(2)的关键是等腰直角三角形的性质得出;解(3)的关键是利用30°的直角边等于斜边的一半得出PC=2PB.
20、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【解析】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.
(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,分别求出甲乙两种生产多少件产品.
【详解】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.
由题意得:,
解这个方程组得:,
答:生产一件甲产品需要15分,生产一件乙产品需要20分.
(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.
则生产甲种产品件,生产乙种产品件.
∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,
又≥60,得x≥900,
由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),
则小王该月收入最多是1644+1900=3544(元),
此时甲有=60(件),
乙有:=555(件),
答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【点睛】
考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
21、 (1);(2).
【解析】
(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.
【详解】
(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:.
故答案为;
(2)画树状图得:
∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:.
【点睛】
本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
22、详见解析.
【解析】
根据矩形性质推出BC=AD=AE,AD∥BC,根据平行线性质推出∠DAE=∠AEB,根据AAS证出△ABE≌△DFA即可.
【详解】
证明:在矩形ABCD中
∵BC=AD,AD∥BC,∠B=90°,
∴∠DAF=∠AEB,
∵DF⊥AE,AE=BC=AD,
∴∠AFD=∠B=90°,
在△ABE和△DFA中
∵ ∠AFD=∠B,∠DAF=∠AEB ,AE=AD
∴△ABE≌△DFA(AAS),
∴AB=DF.
【点睛】
本题考查的知识点有矩形的性质,全等三角形的判定与性质,平行线的性质.解决本题的关键在于能够找到证明三角形全等的有关条件.
23、(1)证明见解析.(2)证明见解析.
【解析】
分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;
(2)连接BC,证△DAC∽△CAB即可得.
详解:(1)如图,连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵AC平分∠DAB,
∴∠OAC=∠DAC,
∴∠DAC=∠OCA,
∴OC∥AD,
又∵AD⊥CD,
∴OC⊥DC,
∴DC是⊙O的切线;
(2)连接BC,
∵AB为⊙O的直径,
∴AB=2AO,∠ACB=90°,
∵AD⊥DC,
∴∠ADC=∠ACB=90°,
又∵∠DAC=∠CAB,
∴△DAC∽△CAB,
∴,即AC2=AB•AD,
∵AB=2AO,
∴AC2=2AD•AO.
点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.
24、 (10-4)米
【解析】
延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.
【详解】
解:如图,延长OC,AB交于点P.
∵∠ABC=120°,
∴∠PBC=60°,
∵∠OCB=∠A=90°,
∴∠P=30°,
∵AD=20米,
∴OA=AD=10米,
∵BC=2米,
∴在Rt△CPB中,PC=BC•tan60°=米,PB=2BC=4米,
∵∠P=∠P,∠PCB=∠A=90°,
∴△PCB∽△PAO,
∴,
∴PA===米,
∴AB=PA﹣PB=()米.
答:路灯的灯柱AB高应该设计为()米.
江苏省镇江市重点达标名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份江苏省镇江市重点达标名校2021-2022学年中考数学模拟预测试卷含解析,共22页。试卷主要包含了计算-5+1的结果为等内容,欢迎下载使用。
北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析: 这是一份北京市各区重点达标名校2021-2022学年中考数学模拟预测题含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。
安徽省当涂县重点达标名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份安徽省当涂县重点达标名校2021-2022学年中考数学模拟预测试卷含解析,共18页。试卷主要包含了对于函数y=,下列说法正确的是,下列各式中,正确的是,已知m=,n=,则代数式的值为等内容,欢迎下载使用。