年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年贵州省黔东南、黔南、黔西南重点名校中考考前最后一卷数学试卷含解析

    2021-2022学年贵州省黔东南、黔南、黔西南重点名校中考考前最后一卷数学试卷含解析第1页
    2021-2022学年贵州省黔东南、黔南、黔西南重点名校中考考前最后一卷数学试卷含解析第2页
    2021-2022学年贵州省黔东南、黔南、黔西南重点名校中考考前最后一卷数学试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年贵州省黔东南、黔南、黔西南重点名校中考考前最后一卷数学试卷含解析

    展开

    这是一份2021-2022学年贵州省黔东南、黔南、黔西南重点名校中考考前最后一卷数学试卷含解析,共23页。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是( )

    A.∠AOD=∠BOC B.∠AOE+∠BOD=90°
    C.∠AOC=∠AOE D.∠AOD+∠BOD=180°
    2.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是(  )

    A.26°. B.44°. C.46°. D.72°
    3.下列图形是轴对称图形的有(  )

    A.2个 B.3个 C.4个 D.5个
    4.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为  
    A. B.
    C. D.
    5.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为(  )

    A. B. C. D.
    6.解分式方程 ,分以下四步,其中,错误的一步是(  )
    A.方程两边分式的最简公分母是(x﹣1)(x+1)
    B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6
    C.解这个整式方程,得x=1
    D.原方程的解为x=1
    7.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:)

    A.30.6米 B.32.1 米 C.37.9米 D.39.4米
    8.关于x的一元二次方程x2-2x-(m-1)=0有两个不相等的实数根,则实数m的取值范围是(  )
    A.且 B. C.且 D.
    9.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )

    A. B. C. D.
    10.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为(   )
    A.﹣10= B.+10=
    C.﹣10= D.+10=
    11.如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )

    A. B. C. D.
    12.已知一个正多边形的一个外角为36°,则这个正多边形的边数是(  )
    A.8 B.9 C.10 D.11
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.分解因式a3﹣6a2+9a=_________________.
    14.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.
    15.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.

    16.一元二次方程x2﹣4=0的解是._________
    17.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.
    18.若正多边形的一个外角是45°,则该正多边形的边数是_________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)解不等式组:.
    20.(6分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.
    (1)求证:AD=CD;
    (2)若AB=10,OE=3,求tan∠DBC的值.

    21.(6分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.

    请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为   度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
    22.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.

    请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.
    23.(8分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.
    (1)求证:AE=AD.
    (2)若AE=3,CD=4,求AB的长.

    24.(10分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.
    求抛物线的解析式;判断△ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.
    25.(10分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”
    (特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD=   ;
    ②若∠BAC=90°(如图3),BC=6,AD=   ;
    (猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;
    (拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.

    26.(12分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.

    (1)求证:四边形AECF为菱形;
    (2)若AB=4,BC=8,求菱形AECF的周长.
    27.(12分) (1)计算:(a-b)2-a(a-2b);
    (2)解方程:=.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.
    【详解】
    A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;
    B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;
    C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;
    D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;
    故选C.
    【点睛】
    本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.
    2、A
    【解析】
    先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.
    【详解】
    解:∵图中是正五边形.
    ∴∠EAB=108°.
    ∵太阳光线互相平行,∠ABG=46°,
    ∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.
    故选A.
    【点睛】
    此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.
    3、C
    【解析】
    试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
    解:图(1)有一条对称轴,是轴对称图形,符合题意;
    图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
    图(3)有二条对称轴,是轴对称图形,符合题意;
    图(3)有五条对称轴,是轴对称图形,符合题意;
    图(3)有一条对称轴,是轴对称图形,符合题意.
    故轴对称图形有4个.
    故选C.
    考点:轴对称图形.
    4、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    5、B
    【解析】
    根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中 cos∠BCD=,可得BC=.
    故选B.
    点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.
    6、D
    【解析】
    先去分母解方程,再检验即可得出.
    【详解】
    方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解
    【点睛】
    本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验
    7、D
    【解析】
    解:延长AB交DC于H,作EG⊥AB于G,如图所示,则GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故选D.

    8、A
    【解析】
    根据一元二次方程的系数结合根的判别式△>1,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
    【详解】
    ∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>1,∴m>1.
    故选B.
    【点睛】
    本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.
    9、A
    【解析】
    【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.
    【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,
    只有A选项符合题意,
    故选A.
    【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.
    10、B
    【解析】
    根据题意表示出衬衫的价格,利用进价的变化得出等式即可.
    【详解】
    解:设第一批购进x件衬衫,则所列方程为:
    +10=.
    故选B.
    【点睛】
    此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.
    11、C
    【解析】
    如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.
    【详解】
    解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,

    此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,
    ∵AB=10,AC=8,BC=6,
    ∴AB2=AC2+BC2,
    ∴∠C=10°,
    ∵∠OP1B=10°,
    ∴OP1∥AC
    ∵AO=OB,\
    ∴P1C=P1B,
    ∴OP1=AC=4,
    ∴P1Q1最小值为OP1-OQ1=1,
    如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,
    P2Q2最大值=5+3=8,
    ∴PQ长的最大值与最小值的和是1.
    故选:C.
    【点睛】
    本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.
    12、C
    【解析】
    试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是360÷36=10,故选C.
    考点:多边形的内角和外角.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、a(a﹣3)1 .
    【解析】
    a3﹣6a1+9a
    =a(a1﹣6a+9)
    =a(a﹣3)1.
    故答案为a(a﹣3)1.
    14、
    【解析】
    列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
    【详解】
    列表如下:

    -2
    -1
    1
    2
    -2

    2
    -2
    -4
    -1
    2

    -1
    -2
    1
    -2
    -1

    2
    2
    -4
    -2
    2

    由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
    ∴积为大于-4小于2的概率为=,
    故答案为.
    【点睛】
    此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
    15、3
    【解析】
    试题分析:如图,∵CD∥AB∥MN,
    ∴△ABE∽△CDE,△ABF∽△MNF,
    ∴,
    即,
    解得:AB=3m,
    答:路灯的高为3m.

    考点:中心投影.
    16、x=±1
    【解析】
    移项得x1=4,
    ∴x=±1.
    故答案是:x=±1.
    17、a≤且a≠1.
    【解析】
    根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可.
    【详解】
    由题意得:△≥0,即(-1)2-4(a-1)×1≥0,
    解得a≤,
    又a-1≠0,
    ∴a≤且a≠1.
    故答案为a≤且a≠1.
    点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.
    18、1;
    【解析】
    根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.
    【详解】
    ∵多边形外角和是360度,正多边形的一个外角是45°,
    ∴360°÷45°=1
    即该正多边形的边数是1.
    【点睛】
    本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、﹣4≤x<1
    【解析】
    先求出各不等式的
    【详解】

    解不等式x﹣1<2,得:x<1,
    解不等式2x+1≥x﹣1,得:x≥﹣4,
    则不等式组的解集为﹣4≤x<1.
    【点睛】
    考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    20、(1)见解析;(2)tan∠DBC=.
    【解析】
    (1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到,从而有AD=CD;
    (2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.
    【详解】
    (1)证明:∵AB为直径,
    ∴∠ACB=90°,
    ∵OD∥BC,
    ∴∠AEO=∠ACB=90°,
    ∴OE⊥AC,
    ∴,
    ∴AD=CD;
    (2)解:∵AB=10,
    ∴OA=OD=5,
    ∴DE=OD﹣OE=5﹣3=2,
    在Rt△OAE中,AE==4,
    ∴tan∠DAE=,
    ∵∠DAC=∠DBC,
    ∴tan∠DBC=.
    【点睛】
    垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.
    21、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.
    【解析】
    分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;
    (2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;
    (3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.
    详解:(1)56÷28%=200,
    即本次一共调查了200名购买者;
    (2)D方式支付的有:200×20%=40(人),
    A方式支付的有:200-56-44-40=60(人),
    补全的条形统计图如图所示,

    在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,
    (3)1600×=928(名),
    答:使用A和B两种支付方式的购买者共有928名.
    点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
    22、(1)50人;(2)补图见解析;(3).
    【解析】
    分析:(1)根据化学学科人数及其所占百分比可得总人数;
    (2)根据各学科人数之和等于总人数求得历史的人数即可;
    (3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.
    详解:(1)该班学生总数为10÷20%=50人;
    (2)历史学科的人数为50﹣(5+10+15+6+6)=8人,
    补全图形如下:

    (3)列表如下:

    化学
    生物
    政治
    历史
    地理
    化学

    生物、化学
    政治、化学
    历史、化学
    地理、化学
    生物
    化学、生物

    政治、生物
    历史、生物
    地理、生物
    政治
    化学、政治
    生物、政治

    历史、政治
    地理、政治
    历史
    化学、历史
    生物、历史
    政治、历史

    地理、历史
    地理
    化学、地理
    生物、地理
    政治、地理
    历史、地理

    由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,
    所以该同学恰好选中化学、历史两科的概率为.
    点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    23、(1)证明见解析(2)
    【解析】
    (1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.
    【详解】
    (1)证明:连接OC,如图所示,
    ∵CD⊥AB,AE⊥CF,
    ∴∠AEC=∠ADC=90°,
    ∵CF是圆O的切线,
    ∴CO⊥CF,即∠ECO=90°,
    ∴AE∥OC,
    ∴∠EAC=∠ACO,
    ∵OA=OC,
    ∴∠CAO=∠ACO,
    ∴∠EAC=∠CAO,
    在△CAE和△CAD中,

    ∴△CAE≌△CAD(AAS),
    ∴AE=AD;
    (2)解:连接CB,如图所示,
    ∵△CAE≌△CAD,AE=3,
    ∴AD=AE=3,
    ∴在Rt△ACD中,AD=3,CD=4,
    根据勾股定理得:AC=5,
    在Rt△AEC中,cos∠EAC==,
    ∵AB为直径,
    ∴∠ACB=90°,
    ∴cos∠CAB==,
    ∵∠EAC=∠CAB,
    ∴=,即AB=.

    【点睛】
    本题考核知识点:切线性质,锐角三角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.
    24、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).
    【解析】
    (1)根据题意得出方程组,求出b、c的值,即可求出答案;
    (2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;
    (3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案.
    【详解】
    解:(1)由题意得:,
    解得:,
    ∴抛物线的解析式为y=-x2+2x+2;
    (2)∵由y=-x2+2x+2得:当x=0时,y=2,
    ∴B(0,2),
    由y=-(x-1)2+3得:C(1,3),
    ∵A(3,-1),
    ∴AB=3,BC=,AC=2,
    ∴AB2+BC2=AC2,
    ∴∠ABC=90°,
    ∴△ABC是直角三角形;
    (3)①如图,当点Q在线段AP上时,

    过点P作PE⊥x轴于点E,AD⊥x轴于点D
    ∵S△OPA=2S△OQA,
    ∴PA=2AQ,
    ∴PQ=AQ
    ∵PE∥AD,
    ∴△PQE∽△AQD,
    ∴==1,
    ∴PE=AD=1
    ∵由-x2+2x+2=1得:x=1,
    ∴P(1+,1)或(1-,1),
    ②如图,当点Q在PA延长线上时,

    过点P作PE⊥x轴于点E,AD⊥x轴于点D
    ∵S△OPA=2S△OQA,
    ∴PA=2AQ,
    ∴PQ=3AQ
    ∵PE∥AD,
    ∴△PQE∽△AQD,
    ∴==3,
    ∴PE=3AD=3
    ∵由-x2+2x+2=-3得:x=1±,
    ∴P(1+,-3),或(1-,-3),
    综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3).
    【点睛】
    本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键.
    25、(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;
    【解析】
    (1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;
    ②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.
    【详解】
    (1)①∵△ABC是等边三角形,BC=1,
    ∴AB=AC=1,∠BAC=60,
    ∴AB′=AC′=1,∠B′AC′=120°.
    ∵AD为等腰△AB′C′的中线,
    ∴AD⊥B′C′,∠C′=30°,
    ∴∠ADC′=90°.
    在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,
    ∴AD=AC′=2.
    ②∵∠BAC=90°,
    ∴∠B′AC′=90°.
    在△ABC和△AB′C′中,,
    ∴△ABC≌△AB′C′(SAS),
    ∴B′C′=BC=6,
    ∴AD=B′C′=3.
    故答案为:①2;②3.
    (2)AD=BC.
    证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.
    ∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,
    ∴∠BAC=∠AB′E.
    在△BAC和△AB′E中,,
    ∴△BAC≌△AB′E(SAS),
    ∴BC=AE.
    ∵AD=AE,
    ∴AD=BC.
    (3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P作PF⊥BC于点F.
    ∵PB=PC,PF⊥BC,
    ∴PF为△PBC的中位线,
    ∴PF=AD=3.
    在Rt△BPF中,∠BFP=90°,PB=5,PF=3,
    ∴BF==1,
    ∴BC=2BF=4.

    【点睛】
    本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.
    26、(1)见解析;(2)1
    【解析】
    (1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
    (2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.
    【详解】
    (1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.
    ∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.
    在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.
    又∵OA=OC,∴四边形AECF是平行四边形.
    又∵EF⊥AC,∴平行四边形AECF是菱形;
    (2)设AF=x.
    ∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.

    【点睛】
    本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.
    27、 (1) b2 (2)1
    【解析】
    分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.
    详解:(1) 解:原式=a2-2ab+b2-a2+2ab =b2 ;
    (2) 解:, 解得:x=1,
    经检验 x=1为原方程的根, 所以原方程的解为x=1.
    点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.

    相关试卷

    广东省统考重点名校2021-2022学年中考考前最后一卷数学试卷含解析:

    这是一份广东省统考重点名校2021-2022学年中考考前最后一卷数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,如果,那么的值为等内容,欢迎下载使用。

    安徽省蒙城重点达标名校2021-2022学年中考考前最后一卷数学试卷含解析:

    这是一份安徽省蒙城重点达标名校2021-2022学年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,计算,定义等内容,欢迎下载使用。

    2021-2022学年湖北省当阳市重点名校中考考前最后一卷数学试卷含解析:

    这是一份2021-2022学年湖北省当阳市重点名校中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了下列二次根式,最简二次根式是,下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map