2021-2022学年哈尔滨香坊区中考数学五模试卷含解析
展开这是一份2021-2022学年哈尔滨香坊区中考数学五模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列说法中,正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在中,,,,则等于( )
A. B. C. D.
2.计算6m3÷(-3m2)的结果是( )
A.-3m B.-2m C.2m D.3m
3.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x
﹣2
﹣1
0
1
2
y
8
3
0
﹣1
0
则抛物线的顶点坐标是( )
A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)
4.下列运算正确的是( )
A. B.
C. D.
5.下列说法中,正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
6.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)
甲种糖果
乙种糖果
混合糖果
方案1
2
3
5
方案2
3
2
5
方案3
2.5
2.5
5
则最省钱的方案为( )
A.方案1 B.方案2
C.方案3 D.三个方案费用相同
7.下列四个不等式组中,解集在数轴上表示如图所示的是( )
A. B. C. D.
8.如图,在中,E为边CD上一点,将沿AE折叠至处,与CE交于点F,若,,则的大小为( )
A.20° B.30° C.36° D.40°
9.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )
A.4.25分钟 B.4.00分钟 C.3.75分钟 D.3.50分钟
10.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )
A.x(x+1)=210 B.x(x﹣1)=210
C.2x(x﹣1)=210 D.x(x﹣1)=210
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_____.
12.若a是方程的解,计算:=______.
13.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.
14.欣欣超市为促销,决定对A,B两种商品统一进行打8折销售,打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元,打折后,小敏买50件A商品和40件B商品仅需________元.
15.分解因式:________.
16.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为 cm.
三、解答题(共8题,共72分)
17.(8分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点 C作AD的垂线 EF交直线 AD于点 E.
(1)求证:EF是⊙O的切线;
(2)连接BC,若AB=5,BC=3,求线段AE的长.
18.(8分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.
滑行时间x/s
0
1
2
3
…
滑行距离y/m
0
4
12
24
…
(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.
19.(8分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.
该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?
20.(8分)如图,△ABC与△A1B1C1是位似图形.
(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;
(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;
(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.
21.(8分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
(1)求抛物线的解析式和顶点坐标;
(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
①若B、C都在抛物线上,求m的值;
②若点C在第四象限,当AC2的值最小时,求m的值.
22.(10分)某中学为了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计(设每天的诵读时间为分钟),将调查统计的结果分为四个等级:Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
()请补全上面的条形图.
()所抽查学生“诵读经典”时间的中位数落在__________级.
()如果该校共有名学生,请你估计该校平均每天“诵读经典”的时间不低于分钟的学生约有多少人?
23.(12分)如图,在△ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DE•DF.
(1)求证:△BFD∽△CAD;
(2)求证:BF•DE=AB•AD.
24.如图,已知在△ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.
(1)求△ABC的面积;
(2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;
(3)如果△APD是直角三角形,求PB的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.
详解:在Rt△ABC中,∵AB=10、AC=8,
∴BC=,
∴sinA=.
故选:A.
点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.
2、B
【解析】
根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.
【详解】
6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.
故选B.
3、C
【解析】
分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.
详解:当或时,,当时,,
,解得 ,
二次函数解析式为,
抛物线的顶点坐标为,
故选C.
点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.
4、D
【解析】
由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b)2=a2±2ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可.
【详解】
解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;
B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;
C、(-a)3=≠,故原题计算错误;
D、2a2•3a3=6a5,故原题计算正确;
故选:D.
【点睛】
本题考查了整式的乘法,解题的关键是掌握有关计算法则.
5、A
【解析】
试题分析:不可能事件发生的概率为0,故A正确;
随机事件发生的概率为在0到1之间,故B错误;
概率很小的事件也可能发生,故C错误;
投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;
故选A.
考点:随机事件.
6、A
【解析】
求出三种方案混合糖果的单价,比较后即可得出结论.
【详解】
方案1混合糖果的单价为,
方案2混合糖果的单价为,
方案3混合糖果的单价为.
∵a>b,
∴,
∴方案1最省钱.
故选:A.
【点睛】
本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.
7、D
【解析】
此题涉及的知识点是不等式组的表示方法,根据规律可得答案.
【详解】
由解集在数轴上的表示可知,该不等式组为,
故选D.
【点睛】
本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.
8、C
【解析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,由三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
【详解】
∵四边形ABCD是平行四边形,
∴,
由折叠的性质得:,,
∴,,
∴;
故选C.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.
9、C
【解析】
根据题目数据求出函数解析式,根据二次函数的性质可得.
【详解】
根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,
得:
解得:a=−0.2,b=1.5,c=−2,
即p=−0.2t2+1.5t−2,
当t=−=3.75时,p取得最大值,
故选C.
【点睛】
本题考查了二次函数的应用,熟练掌握性质是解题的关键.
10、B
【解析】
设全组共有x名同学,那么每名同学送出的图书是(x−1)本;
则总共送出的图书为x(x−1);
又知实际互赠了210本图书,
则x(x−1)=210.
故选:B.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4
【解析】
由三角形的重心的概念和性质,由AD、BE为△ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=×6=4.
故答案为4.
点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.
12、1
【解析】
根据一元二次方程的解的定义得a2﹣3a+1=1,即a2﹣3a=﹣1,再代入,然后利用整体思想进行计算即可.
【详解】
∵a是方程x2﹣3x+1=1的一根,
∴a2﹣3a+1=1,即a2﹣3a=﹣1,a2+1=3a
∴
故答案为1.
【点睛】
本题考查了一元二次方程的解:使一元二次方程两边成立的未知数的值叫一元二次方程的解.也考查了整体思想的运用.
13、
【解析】
首先由图可得此转盘被平分成了24等份,其中惊蛰、春分、清明区域有3份,然后利用概率公式求解即可求得答案.
【详解】
∵如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,
∴指针落在惊蛰、春分、清明的概率是:.
故答案为
【点睛】
此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
14、1
【解析】
设A、B两种商品的售价分别是1件x元和1件y元,根据题意列出x和y的二元一次方程组,解方程组求出x和y的值,进而求解即可.
【详解】
解:设A、B两种商品的售价分别是1件x元和1件y元,
根据题意得,
解得.
所以0.8×(8×50+2×40)=1(元).
即打折后,小敏买50件A商品和40件B商品仅需1元.
故答案为1.
【点睛】
本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
15、 (a+1)(a-1)
【解析】
根据平方差公式分解即可.
【详解】
(a+1)(a-1).
故答案为:(a+1)(a-1).
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
16、3
【解析】
∵圆锥的母线长是5cm,侧面积是15πcm2,
∴圆锥的侧面展开扇形的弧长为:l==6π,
∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r==3cm,
三、解答题(共8题,共72分)
17、(1)证明见解析
(2)
【解析】
(1)连接OC,根据等腰三角形的性质、平行线的判定得到OC∥AE,得到OC⊥EF,根据切线的判定定理证明;
(2)根据勾股定理求出AC,证明△AEC∽△ACB,根据相似三角形的性质列出比例式,计算即可.
【详解】
(1)证明:连接OC,
∵OA=OC,
∴∠OCA=∠BAC,
∵点C是的中点,
∴∠EAC=∠BAC,
∴∠EAC=∠OCA,
∴OC∥AE,
∵AE⊥EF,
∴OC⊥EF,即EF是⊙O的切线;
(2)解:∵AB为⊙O的直径,
∴∠BCA=90°,
∴AC==4,
∵∠EAC=∠BAC,∠AEC=∠ACB=90°,
∴△AEC∽△ACB,
∴,
∴AE=.
【点睛】
本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键.
18、(1)20s;(2)
【解析】
(1)利用待定系数法求出函数解析式,再求出y=840时x的值即可得;
(2)根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:(1)∵该抛物线过点(0,0),
∴设抛物线解析式为y=ax2+bx,
将(1,4)、(2,12)代入,得:
,
解得:,
所以抛物线的解析式为y=2x2+2x,
当y=840时,2x2+2x=840,
解得:x=20(负值舍去),
即他需要20s才能到达终点;
(2)∵y=2x2+2x=2(x+)2﹣,
∴向左平移2个单位,再向下平移5个单位后函数解析式为y=2(x+2+)2﹣﹣5=2(x+)2﹣.
【点睛】
本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.
19、(1)10,144;(2)详见解析;(3)96
【解析】
(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;
(2)依据D类型留守学生的数量,即可将条形统计图补充完整;
(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.
【详解】
解:(1)2÷20%=10(人),
×100%×360°=144°,
故答案为10,144;
(2)10﹣2﹣4﹣2=2(人),
如图所示:
(3)2400××20%=96(人),
答:估计该校将有96名留守学生在此关爱活动中受益.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
20、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)
【解析】
分析:(1)直接利用已知点位置得出B点坐标即可;
(2)直接利用位似图形的性质得出对应点位置进而得出答案;
(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.
详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);
故答案为(﹣2,﹣5);
(2)如图所示:△AB2C2,即为所求;
(3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.
故答案为6+4.
点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.
21、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为 .
【解析】
分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
详解:
(1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
∴﹣4﹣8+c=0,即c=12,
∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
则顶点坐标为(﹣2,16);
(2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
∵点B关于原点的对称点为C,
∴C(﹣m,﹣n),
∵C落在抛物线上,
∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
解得:﹣m2+4m+12=m2﹣4m﹣12,
解得:m=2或m=﹣2;
②∵点C(﹣m,﹣n)在第四象限,
∴﹣m>0,﹣n<0,即m<0,n>0,
∵抛物线顶点坐标为(﹣2,16),
∴0<n≤16,
∵点B在抛物线上,
∴﹣m2﹣4m+12=n,
∴m2+4m=﹣n+12,
∵A(2,0),C(﹣m,﹣n),
∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
当n=时,AC2有最小值,
∴﹣m2﹣4m+12=,
解得:m=,
∵m<0,∴m=不合题意,舍去,
则m的值为.
点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.
22、)补全的条形图见解析()Ⅱ级.().
【解析】
试题分析:(1)根据Ⅱ级的人数和所占的百分比即可求出总数,从而求出三级人数,进而补全图形;
(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.;
(3)由样本估计总体,由于时间不低于的人数占,故该类学生约有408人.
试题解析: (1)本次随机抽查的人数为:20÷40%=50(人).三级人数为:50-13-20-7=10.
补图如下:
(2)把所有同类数据按照从小到大的顺序排列,中间的数据是中位数,则该数在Ⅱ级.
(3)由样本估计总体,由于时间不低于的人数占,所以该类学生约有.
23、见解析
【解析】
试题分析:(1), ,可得∽ ,从而得,
再根据∠BDF=∠CDA 即可证;
(2)由∽ ,可得,从而可得,再由∽,可得从而得,继而可得 ,得到.
试题解析:(1)∵,∴,
∵ ,∴∽ ,
∴,
又∵∠ADB=∠CDE ,∴∠ADB+∠ADF=∠CDE+∠ADF,
即∠BDF=∠CDA ,
∴∽;
(2)∵∽ ,∴,
∵ ,∴,
∵∽,∴,∴,
∴ , ∴.
【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.
24、(1)12(2)y=(0<x<5)(3)或
【解析】
试题分析:(1)过点A作AH⊥BC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;
(2)先证明△BPD∽△BAC,得到=,再根据 ,代入相关的量即可得;
(3)分情况进行讨论即可得.
试题解析:(1)过点A作AH⊥BC于点H ,则∠AHB=90°,∴cosB= ,
∵cosB=,AB=5,∴BH=4,∴AH=3,
∵AB=AC,∴BC=2BH=8,
∴S△ABC=×8×3=12
(2)∵PB=PD,∴∠B=∠PDB,
∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,
∴△BPD∽△BAC,
∴ ,
即,
解得=,
∴ ,
∴ ,
解得y=(0<x<5);
(3)∠APD<90°,
过C作CE⊥AB交BA延长线于E,可得cos∠CAE= ,
①当∠ADP=90°时,
cos∠APD=cos∠CAE=,
即 ,
解得x=;
②当∠PAD=90°时,
,
解得x=,
综上所述,PB=或.
【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.
相关试卷
这是一份2024年黑龙江省哈尔滨市香坊区德强学校中考数学三模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年黑龙江省哈尔滨市香坊区中考数学一模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年黑龙江省哈尔滨市香坊区中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。