![2021-2022学年河北省沧州市盐山县中考数学考前最后一卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13284963/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年河北省沧州市盐山县中考数学考前最后一卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13284963/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年河北省沧州市盐山县中考数学考前最后一卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13284963/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021-2022学年河北省沧州市盐山县中考数学考前最后一卷含解析
展开
这是一份2021-2022学年河北省沧州市盐山县中考数学考前最后一卷含解析,共16页。试卷主要包含了下列计算正确的是,估计介于,下列各式,二次函数y=﹣,对于下列调查等内容,欢迎下载使用。
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.的整数部分是( )A.3 B.5 C.9 D.62.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×1093.第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )A. B. C. D.4.下列计算正确的是A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-45.估计介于( )A.0与1之间 B.1与2之间 C.2与3之间 D.3与4之间6.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( )A.①②③ B.①③⑤ C.②③④ D.②④⑤7.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5个红球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个黄球的概率为( )A. B. C. D.8.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为( )A. B.2 C. D.9.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )A.向左平移1个单位 B.向右平移3个单位C.向上平移3个单位 D.向下平移1个单位10.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A.①② B.①③ C.②③ D.①②③二、填空题(共7小题,每小题3分,满分21分)11.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).12.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___结果保留13.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是_____.14.计算:______.15.如图,点分别在正三角形的三边上,且也是正三角形.若的边长为,的边长为,则的内切圆半径为__________.16.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于_____.17.函数y=的自变量x的取值范围是_____.三、解答题(共7小题,满分69分)18.(10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?19.(5分)已知关于x的一元二次方程为常数.求证:不论m为何值,该方程总有两个不相等的实数根;若该方程一个根为5,求m的值.20.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E.(1)求证:直线CE是⊙O的切线.(2)若BC=3,CD=3,求弦AD的长.21.(10分)解不等式组,并将解集在数轴上表示出来.22.(10分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)23.(12分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.(1)求证:BC平分∠DBA;(2)若,求的值.24.(14分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项,,,第二道单选题有4个选项,,,,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题: (1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.2、B【解析】试题分析: 15000000=1.5×2.故选B.考点:科学记数法—表示较大的数3、B【解析】
先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.【详解】∵有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.故选B.【点睛】本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.4、B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2·a2=a4 ,故A选项错误;B. (-a2)3=-a6 ,正确;C. 3a2-6a2=-3a2 ,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.5、C【解析】
解:∵,∴,即∴估计在2~3之间故选C.【点睛】本题考查估计无理数的大小.6、D【解析】
根据实数的运算法则即可一一判断求解.【详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.7、A【解析】
设黄球有x个,根据摸出一个球是蓝球的概率是,得出黄球的个数,再根据概率公式即可得出随机摸出一个黄球的概率.【详解】解:设袋子中黄球有x个,根据题意,得:,解得:x=3,即袋中黄球有3个,所以随机摸出一个黄球的概率为,故选A.【点睛】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.8、D【解析】
由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5, 解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5, 解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5, 解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5, 解得:n=, 或x=n时y取最小值,x=1时y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此种情形不合题意,所以m+n=﹣1+=.9、D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.10、B【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】①对从某国进口的香蕉进行检验检疫适合抽样调查;②审查某教科书稿适合全面调查;③中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 二、填空题(共7小题,每小题3分,满分21分)11、>;【解析】
∵=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m)、(2,n)在二次函数的图像上,∵|−1−1|>|2−1|,且m>n, ∴a>0.故答案为>12、【解析】
直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.【详解】由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6π.故答案为6π.【点睛】本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键.13、11≤x<1【解析】
根据对于实数x我们规定[x]不大于x最大整数,可得答案.【详解】由[]=5,得: ,解得11≤x<1,故答案是:11≤x<1.【点睛】考查了解一元一次不等式组,利用[x]不大于x最大整数得出不等式组是解题关键.14、【解析】原式= =.故答案为:.15、【解析】
根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=(AE+AF-EF)=(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.【详解】解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,
∴AD=AE=[(AB+AC)-(BD+CE)]= [(AB+AC)-(BF+CF)]=(AB+AC-BC),如图2,∵△ABC,△DEF都为正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
在△AEF和△CFD中,,
∴△AEF≌△CFD(AAS);
同理可证:△AEF≌△CFD≌△BDE;
∴BE=AF,即AE+AF=AE+BE=a.
设M是△AEF的内心,过点M作MH⊥AE于H,
则根据图1的结论得:AH=(AE+AF-EF)=(a-b);
∵MA平分∠BAC,
∴∠HAM=30°;
∴HM=AH•tan30°=(a-b)•=故答案为:.【点睛】本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键.16、40°【解析】
由∠A=30°,∠APD=70°,利用三角形外角的性质,即可求得∠C的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数.【详解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B与∠C是对的圆周角,∴∠B=∠C=40°.故答案为40°.【点睛】此题考查了圆周角定理与三角形外角的性质.此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.17、x≥﹣且x≠1【解析】分析:根据被开方数大于等于0,分母不等于0列式求解即可.详解:根据题意得2x+1≥0,x-1≠0,解得x≥-且x≠1.故答案为x≥-且x≠1.点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单. 三、解答题(共7小题,满分69分)18、羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米. 根据题意得 (100﹣4x)x=400,解得 x1=20,x2=1. 则100﹣4x=20或100﹣4x=2. ∵2>21, ∴x2=1舍去. 即AB=20,BC=20考点:一元二次方程的应用.19、(1)详见解析;(2)的值为3或1.【解析】
(1)将原方程整理成一般形式,令即可求解,(2)将x=1代入,求得m的值,再重新解方程即可.【详解】证明:原方程可化为,,,,,不论m为何值,该方程总有两个不相等的实数根.解:将代入原方程,得:,解得:,.的值为3或1.【点睛】本题考查了参数对一元二次方程根的影响.中等难度.关键是将根据不同情况讨论参数的取值范围.20、(1)证明见解析(2) 【解析】
(1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;(2)由△CDB∽△CAD,可得,推出CD2=CB•CA,可得(3)2=3CA,推出CA=6,推出AB=CA﹣BC=3,,设BD=k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.【详解】(1)证明:连结OC,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴,∴CD2=CB•CA,∴(3)2=3CA,∴CA=6,∴AB=CA﹣BC=3,,设BD=k,AD=2k,在Rt△ADB中,2k2+4k2=5,∴k=,∴AD=.21、原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.【解析】分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案详解:解不等式①,得x>﹣4,解不等式②,得x≤1,把不等式①②的解集在数轴上表示如图,原不等式组的解集为﹣4<x≤1.点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.22、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23、 (1)证明见解析;(2) 【解析】分析:(1)如下图,连接OC,由已知易得OC⊥DE,结合BD⊥DE可得OC∥BD,从而可得∠1=∠2,结合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,从而可得BC平分∠DBA;(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.详解:(1)证明:连结OC,∵DE与⊙O相切于点C,∴OC⊥DE.∵BD⊥DE,∴OC∥BD. . ∴∠1=∠2,∵OB=OC,∴∠1=∠3,∴∠2=∠3,即BC平分∠DBA. . (2)∵OC∥BD,∴△EBD∽△EOC,△DBM∽△OCM,. ∴,∴,∵,设EA=2k,AO=3k,∴OC=OA=OB=3k.∴.点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.24、(1);(2);(3)一.【解析】
(1)直接利用概率公式求解;
(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;
(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.【详解】解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;
故答案为;
(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是.理由如下:
画树状图为:(用Z表示正确选项,C表示错误选项)
共有9种等可能的结果数,其中小颖顺利通关的结果数为1,
所以小敏顺利通关的概率=;
(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)
共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,
由于>,
所以建议小敏在答第一道题时使用“求助”.【点睛】本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.
相关试卷
这是一份河北省石家庄创新国际学校2021-2022学年中考数学考前最后一卷含解析,共20页。试卷主要包含了答题时请按要求用笔,已知,若分式有意义,则a的取值范围为等内容,欢迎下载使用。
这是一份河北省衡水市名校2021-2022学年中考数学考前最后一卷含解析,共18页。试卷主要包含了计算-5x2-3x2的结果是,估计介于等内容,欢迎下载使用。
这是一份2021-2022学年潜江市中考数学考前最后一卷含解析,共21页。试卷主要包含了答题时请按要求用笔,若分式有意义,则x的取值范围是,下列运算正确的是等内容,欢迎下载使用。