终身会员
搜索
    上传资料 赚现金

    2021-2022学年河北省秦皇岛青龙县联考中考数学模拟精编试卷含解析

    立即下载
    加入资料篮
    2021-2022学年河北省秦皇岛青龙县联考中考数学模拟精编试卷含解析第1页
    2021-2022学年河北省秦皇岛青龙县联考中考数学模拟精编试卷含解析第2页
    2021-2022学年河北省秦皇岛青龙县联考中考数学模拟精编试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年河北省秦皇岛青龙县联考中考数学模拟精编试卷含解析

    展开

    这是一份2021-2022学年河北省秦皇岛青龙县联考中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,﹣的相反数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是(  )
    A.相交 B.相切 C.相离 D.不能确定
    2.方程的根是( )
    A.x=2 B.x=0 C.x1=0,x2=-2 D. x1=0,x2=2
    3.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度与时间之间的关系的图象是( )

    A. B. C. D.
    4.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于(  )

    A.30° B.35° C.40° D.50°
    5.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( )
    A. B. C. D.
    6.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()

    A.37 B.38 C.50 D.51
    7.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是(  )

    A.0个 B.1个或2个
    C.0个、1个或2个 D.只有1个
    8.﹣的相反数是(  )
    A.8 B.﹣8 C. D.﹣
    9.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是(  )

    A.6(m﹣n) B.3(m+n) C.4n D.4m
    10.=(  )
    A.±4 B.4 C.±2 D.2
    11.2017年我国大学生毕业人数将达到7490000人,这个数据用科学记数法表示为(  )
    A.7.49×107 B.74.9×106 C.7.49×106 D.0.749×107
    12.△ABC在网络中的位置如图所示,则cos∠ACB的值为(  )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是   .
    14.计算:﹣1﹣2=_____.
    15.如图,在每个小正方形边长为的网格中,的顶点,,均在格点上,为边上的一点.
    线段的值为______________;在如图所示的网格中,是的角平分线,在上求一点,使的值最小,请用无刻度的直尺,画出和点,并简要说明和点的位置是如何找到的(不要求证明)___________.
    16.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为_____.
    17.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.

    18.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=,则CD=_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:

    “祖冲之奖”的学生成绩统计表:
    分数/分
    80
    85
    90
    95
    人数/人
    4
    2
    10
    4
    根据图表中的信息,解答下列问题:
    (1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整;
    (2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;
    (3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y).用列表法或树状图法求这个点在第二象限的概率.
    20.(6分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:
    补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?
    21.(6分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA,OC 为邻边作矩形 OABC, 动点 M,N 以每秒 1 个单位长度的速度分别从点 A、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP⊥BC,交 OB 于点 P,连接 MP.

    (1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;
    (2)记△OMP 的面积为 S,求 S 与 t 的函数关系式;并求 t 为何值时,S有最大值,并求出最大值.
    22.(8分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.

    23.(8分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.
    (1)求证:∠CBE=∠F;
    (2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.

    24.(10分)解不等式组,请结合题意填空,完成本题的解答.
    (1)解不等式①,得   ;
    (2)解不等式②,得   ;
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式的解集为   .
    25.(10分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
    (拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
    (应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)

    26.(12分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.

    (1)试说明DF是⊙O的切线;
    (2)若AC=3AE,求tanC.
    27.(12分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,,求末端操作器节点到地面直线的距离.(结果保留根号)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.
    解:∵⊙O的半径为3,圆心O到直线L的距离为2,
    ∵3>2,即:d<r,
    ∴直线L与⊙O的位置关系是相交.
    故选A.
    考点:直线与圆的位置关系.
    2、C
    【解析】
    试题解析:x(x+1)=0,
    ⇒x=0或x+1=0,
    解得x1=0,x1=-1.
    故选C.
    3、C
    【解析】
    首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.
    【详解】
    根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
    故选:C.
    【点睛】
    此题考查函数的图象,解题关键在于观察图形
    4、C
    【解析】
    分析:欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.
    解答:解:∵∠APD是△APC的外角,
    ∴∠APD=∠C+∠A;
    ∵∠A=30°,∠APD=70°,
    ∴∠C=∠APD-∠A=40°;
    ∴∠B=∠C=40°;
    故选C.
    5、A
    【解析】
    圆柱体的底面积为:π×()2,
    ∴矿石的体积为:π×()2h= .
    故答案为.
    6、D
    【解析】
    试题解析:
    第①个图形中有 盆鲜花,
    第②个图形中有盆鲜花,
    第③个图形中有盆鲜花,

    第n个图形中的鲜花盆数为
    则第⑥个图形中的鲜花盆数为
    故选C.
    7、C
    【解析】
    根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.
    【详解】
    ∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,
    ∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,
    当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,
    当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,
    故选C.
    【点睛】
    考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.
    8、C
    【解析】
    互为相反数的两个数是指只有符号不同的两个数,所以的相反数是,
    故选C.
    9、D
    【解析】
    解:设小长方形的宽为a,长为b,则有b=n-3a,
    阴影部分的周长:
    2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.
    故选D.
    10、B
    【解析】
    表示16的算术平方根,为正数,再根据二次根式的性质化简.
    【详解】
    解:,
    故选B.
    【点睛】
    本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.
    11、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    7490000=7.49×106.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    12、B
    【解析】
    作AD⊥BC的延长线于点D,如图所示:

    在Rt△ADC中,BD=AD,则AB=BD.
    cos∠ACB=,
    故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.
    ∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=1.
    14、-3
    【解析】
    -1-2=-1+(-2)=-(1+2)=-3,
    故答案为-3.
    15、(Ⅰ) (Ⅱ)如图,取格点、,连接与交于点,连接与交于点.
    【解析】
    (Ⅰ)根据勾股定理进行计算即可.
    (Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出是的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于点P,此时的值最小.
    【详解】
    (Ⅰ)根据勾股定理得AC=;
    故答案为:1.
    (Ⅱ)如图,如图,取格点、,连接与交于点,连接与交于点,则点P即为所求.

    说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.
    【点睛】
    本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.
    16、5.5×1.
    【解析】
    分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    详解:5.5亿=5 5000 0000=5.5×1,
    故答案为5.5×1.
    点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    17、1°
    【解析】
    根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE,AB=AD,根据等腰三角形的性质和三角形内角和定理计算即可.
    【详解】
    ∵△ABC≌△ADE,
    ∴∠BAC=∠DAE,AB=AD,
    ∴∠BAD=∠EAC=40°,
    ∴∠B=(180°-40°)÷2=1°,
    故答案为1.
    【点睛】
    本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.
    18、
    【解析】
    延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.
    【详解】
    如图,延长AD、BC相交于点E,

    ∵∠B=90°,
    ∴,
    ∴BE=,
    ∴CE=BE-BC=2,AE=,
    ∴,
    又∵∠CDE=∠CDA=90°,
    ∴在Rt△CDE中,,
    ∴CD=.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限).
    【解析】
    (1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;
    (2)根据中位数和众数的定义求解可得;
    (3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.
    【详解】
    (1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:

    故答案为40;
    (2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.
    故答案为90、90;
    (3)列表法:

    ∵第二象限的点有(﹣2,2)和(﹣1,2),∴P(点在第二象限).
    【点睛】
    本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.
    20、(1)补图见解析;(2)27°;(3)1800名
    【解析】
    (1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;
    (2)用360°乘以对应的比例即可求解;
    (3)用总人数乘以对应的百分比即可求解.
    【详解】
    (1)抽取的总人数是:10÷25%=40(人),
    在B类的人数是:40×30%=12(人).

    (2)扇形统计图扇形D的圆心角的度数是:360×=27°;
    (3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).
    考点:条形统计图、扇形统计图.
    21、(1),;(2),1,1.
    【解析】
    (1)根据四边形OABC为矩形即可求出点B坐标,设直线OB解析式为,将B代入即可求直线OB的解析式;
    (2)由题意可得,由(1)可得点的坐标为, 表达出△OMP的面积即可,利用二次函数的性质求出最大值.
    【详解】
    解:(1)∵OA=6,OC=4, 四边形OABC为矩形,
    ∴AB=OC=4,
    ∴点B,
    设直线OB解析式为,将B代入得,解得,
    ∴,
    故答案为:;
    (2)由题可知,,

    由(1)可知,点的坐标为




    ∴当时,有最大值1.
    【点睛】
    本题考查了二次函数与几何动态问题,解题的关键是根据题意表达出点的坐标,利用几何知识列出函数关系式.
    22、(1)证明见解析;(2)BP=1.
    【解析】
    分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;
    (2)证明△AOP∽△ABD,然后利用相似比求BP的长.
    详(1)证明:连接OB,如图,

    ∵AD是⊙O的直径,
    ∴∠ABD=90°,
    ∴∠A+∠ADB=90°,
    ∵BC为切线,
    ∴OB⊥BC,
    ∴∠OBC=90°,
    ∴∠OBA+∠CBP=90°,
    而OA=OB,
    ∴∠A=∠OBA,
    ∴∠CBP=∠ADB;
    (2)解:∵OP⊥AD,
    ∴∠POA=90°,
    ∴∠P+∠A=90°,
    ∴∠P=∠D,
    ∴△AOP∽△ABD,
    ∴,即,
    ∴BP=1.
    点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.
    23、(1)详见解析;(1)
    【解析】
    (1)连接OE交DF于点H,由切线的性质得出∠F+∠EHF =90∘,由FD⊥OC得出∠DOH+∠DHO =90∘,依据对顶角的定义得出∠EHF=∠DHO,从而求得∠F=∠DOH,依据∠CBE=∠DOH,从而即可得证;
    (1)依据圆周角定理及其推论得出∠F=∠COE=1∠CBE =30°,求出OD的值,利用锐角三角函数的定义求出OH的值,进一步求得HE的值,利用锐角三角函数的定义进一步求得EF的值.
    【详解】
    (1)证明:连接OE交DF于点H,
    ∵EF是⊙O的切线,OE是⊙O的半径,
    ∴OE⊥EF.
    ∴∠F+∠EHF=90°.
    ∵FD⊥OC,
    ∴∠DOH+∠DHO=90°.
    ∵∠EHF=∠DHO,
    ∴∠F=∠DOH.
    ∵∠CBE=∠DOH,

    (1)解:∵∠CBE=15°,
    ∴∠F=∠COE=1∠CBE=30°.
    ∵⊙O的半径是,点D是OC中点,
    ∴.
    在Rt△ODH中,cos∠DOH=,
    ∴OH=1.
    ∴.
    在Rt△FEH中,


    【点睛】
    本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.
    24、(1)x≤1;(1)x≥﹣1;(3)见解析;(4)﹣1≤x≤1.
    【解析】
    先求出不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)解不等式①,得x≤1,
    (1)解不等式②,得x≥﹣1,
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为﹣1≤x≤1,
    故答案为x≤1,x≥﹣1,﹣1≤x≤1.
    【点睛】
    本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.
    25、见解析
    【解析】
    试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
    应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
    试题解析:
    探究:∵四边形ABCD、四边形CEFG均为菱形,
    ∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
    ∵∠A=∠F,
    ∴∠BCD=∠ECG.
    ∴∠BCD-∠ECD=∠ECG-∠ECD,
    即∠BCE=∠DCG.
    在△BCE和△DCG中,

    ∴△BCE≌△DCG(SAS),
    ∴BE=DG.
    应用:∵四边形ABCD为菱形,
    ∴AD∥BC,
    ∵BE=DG,
    ∴S△ABE+S△CDE=S△BEC=S△CDG=8,
    ∵AE=3ED,
    ∴S△CDE= ,
    ∴S△ECG=S△CDE+S△CDG=10
    ∴S菱形CEFG=2S△ECG=20.
    26、(1)详见解析;(2)
    【解析】
    (1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;
    (2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.
    【详解】
    (1)连接OD,

    ∵OB=OD,
    ∴∠B=∠ODB,
    ∵AB=AC,
    ∴∠B=∠C,
    ∴∠ODB=∠C,
    ∴OD∥AC,
    ∵DF⊥AC,
    ∴OD⊥DF,
    ∴DF是⊙O的切线;
    (2)连接BE,
    ∵AB是直径,
    ∴∠AEB=90°,
    ∵AB=AC,AC=3AE,
    ∴AB=3AE,CE=4AE,
    ∴BE=,
    在RT△BEC中,tanC=.
    27、()cm.
    【解析】
    作BG⊥CD,垂足为G,BH⊥AF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.
    【详解】
    如图,作BG⊥CD,垂足为G,BH⊥AF,垂足为H,

    在中,∠BCD=60°,BC=60cm,
    ∴,
    在中,∠BAF=45°,AB=60cm,
    ∴,
    ∴D到L的距离.
    【点睛】
    本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.

    相关试卷

    2023年河北省秦皇岛市青龙县中考数学三模试卷(含解析):

    这是一份2023年河北省秦皇岛市青龙县中考数学三模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年河北省秦皇岛市青龙县中考数学模拟试卷(三)-普通用卷:

    这是一份2023年河北省秦皇岛市青龙县中考数学模拟试卷(三)-普通用卷,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年河北省秦皇岛市青龙县中考数学模拟试卷(三)(含解析):

    这是一份2023年河北省秦皇岛市青龙县中考数学模拟试卷(三)(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map