开学活动
搜索
    上传资料 赚现金

    2021-2022学年河南省三门峡灵宝市重点中学中考四模数学试题含解析

    2021-2022学年河南省三门峡灵宝市重点中学中考四模数学试题含解析第1页
    2021-2022学年河南省三门峡灵宝市重点中学中考四模数学试题含解析第2页
    2021-2022学年河南省三门峡灵宝市重点中学中考四模数学试题含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年河南省三门峡灵宝市重点中学中考四模数学试题含解析

    展开

    这是一份2021-2022学年河南省三门峡灵宝市重点中学中考四模数学试题含解析,共24页。试卷主要包含了如图,在中,,下列方程中是一元二次方程的是,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在△ABC中,点D、E分别在边AB、AC上,如果AD=1,BD=3,那么由下列条件能够判断DE∥BC的是(  )
    A. B. C. D.
    2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y<0;③3a+c=0;④若(x1,y1)(x2、y2)在函数图象上,当0<x1<x2时,y1<y2,其中正确的是(  )

    A.①②④ B.①③ C.①②③ D.①③④
    3.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为(  )
    A.55×105 B.5.5×104 C.0.55×105 D.5.5×105
    4.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是(  )
    A.m<3 B.m>3 C.m≤3 D.m≥3
    5.如图,已知垂直于的平分线于点,交于点, ,若的面积为1,则的面积是( )

    A. B. C. D.
    6.如图,在中,.点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结.给出以下四个结论:①;②点是的中点;③;④,其中正确的个数是( )

    A.4 B.3 C.2 D.1
    7.下列方程中是一元二次方程的是(  )
    A. B.
    C. D.
    8.下列运算正确的是(  )
    A.a4+a2=a4 B.(x2y)3=x6y3
    C.(m﹣n)2=m2﹣n2 D.b6÷b2=b3
    9.某微生物的直径为0.000 005 035m,用科学记数法表示该数为(  )
    A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣5
    10.如图,在平行四边形ABCD中,都不一定 成立的是(  )
    ①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.

    A.①和④ B.②和③ C.③和④ D.②和④
    11.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为( )

    A.15 m B. m C. m D. m
    12.在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是(  )
    A.P1(0,0),P2(3,﹣4),P3(﹣4,3)
    B.P1(﹣1,1),P2(﹣3,4),P3(4,3)
    C.P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
    D.P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知关于x的方程x2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.
    14.如图,已知等边△ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF、BE相交于点P,当点E从点A运动到点C时,点P经过点的路径长为__.

    15.如图,在矩形ABCD中,AB=2,AD=6,E.F分别是线段AD,BC上的点,连接EF,使四边形ABFE为正方形,若点G是AD上的动点,连接FG,将矩形沿FG折叠使得点C落在正方形ABFE的对角线所在的直线上,对应点为P,则线段AP的长为______.

    16.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.
    17.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.

    18.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知:二次函数满足下列条件:①抛物线y=ax2+bx与直线y=x只有一个交点;②对于任意实数x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.
    (1)求二次函数y=ax2+bx的解析式;
    (2)若当-2≤x≤r(r≠0)时,恰有t≤y≤1.5r成立,求t和r的值.
    20.(6分)解不等式组
    请结合题意填空,完成本题的解答
    (1)解不等式①,得_______.
    (2)解不等式②,得_______.
    (3)把不等式①和②的解集在数轴上表示出来:

    (4)原不等式组的解集为_______________.
    21.(6分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为.
    填空:______;
    证明:;
    当四边形ABCD的面积和的面积相等时,求点P的坐标.

    22.(8分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”.
    当的半径为1时.
    在点、、中,的“特征点”是______;
    点P在直线上,若点P为的“特征点”求b的取值范围;
    的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围.

    23.(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:

    (1)调查了________名学生;
    (2)补全条形统计图;
    (3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;
    (4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
    24.(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
    销售单价(元)
    x
    销售量y(件)
        
    销售玩具获得利润w(元)
        
    (2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
    25.(10分)如图,已知⊙O,请用尺规做⊙O的内接正四边形ABCD,(保留作图痕迹,不写做法)

    26.(12分)先化简,再求值:,其中x=-1.
    27.(12分)如图所示是一幢住房的主视图,已知:,房子前后坡度相等,米,米,设后房檐到地面的高度为米,前房檐到地面的高度米,求的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    如图,∵AD=1,BD=3,
    ∴,
    当时,,
    又∵∠DAE=∠BAC,
    ∴△ADE∽△ABC,
    ∴∠ADE=∠B,
    ∴DE∥BC,
    而根据选项A、B、C的条件都不能推出DE∥BC,
    故选D.

    2、B
    【解析】
    ∵函数图象的对称轴为:x=-==1,∴b=﹣2a,即2a+b=0,①正确;
    由图象可知,当﹣1<x<3时,y<0,②错误;
    由图象可知,当x=1时,y=0,∴a﹣b+c=0,
    ∵b=﹣2a,∴3a+c=0,③正确;
    ∵抛物线的对称轴为x=1,开口方向向上,
    ∴若(x1,y1)、(x2,y2)在函数图象上,当1<x1<x2时,y1<y2;当x1<x2<1时,y1>y2;
    故④错误;
    故选B.
    点睛:本题主要考查二次函数的相关知识,解题的关键是:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理.
    3、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将度55000用科学记数法表示为5.5×1.
    故选B.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、A
    【解析】
    分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m的取值范围即可.
    详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,
    ∴△=(-2)2-4m>0,
    ∴m<3,
    故选A.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
    5、B
    【解析】
    先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.
    【详解】
    ∵BD平分∠ABC,
    ∴∠ABD=∠EBD,
    ∵AE⊥BD,
    ∴∠ADB=∠EDB=90°,
    又∵BD=BD,
    ∴△ABD≌△EBD,
    ∴AD=ED,
    ∵,的面积为1,
    ∴S△AEC=S△ABC=,
    又∵AD=ED,
    ∴S△CDE= S△AEC=,
    故选B.
    【点睛】
    本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.
    6、C
    【解析】
    用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.
    【详解】
    解:由题意知,△ABC是等腰直角三角形,
    设AB=BC=2,则AC=2,
    ∵点D是AB的中点,
    ∴AD=BD=1,
    在Rt△DBC中,DC=,(勾股定理)
    ∵BG⊥CD,
    ∴∠DEB=∠ABC=90°,
    又∵∠CDB=∠BDE,
    ∴△CDB∽△BDE,
    ∴∠DBE=∠DCB, ,即
    ∴DE= ,BE=,
    在△GAB和△DBC中,
    ∴△GAB≌△DBC(ASA)
    ∴AG=DB=1,BG=CD=,
    ∵∠GAB+∠ABC=180°,
    ∴AG∥BC,
    ∴△AGF∽△CBF,
    ∴,且有AB=BC,故①正确,
    ∵GB=,AC=2,
    ∴AF==,故③正确,
    GF=,FE=BG﹣GF﹣BE=,故②错误,
    S△ABC=AB•AC=2,S△BDF=BF•DE=××=,故④正确.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键.
    7、C
    【解析】
    找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可.
    【详解】
    解:A、当a=0时,不是一元二次方程,故本选项错误;
    B、是分式方程,故本选项错误;
    C、化简得:是一元二次方程,故本选项正确;
    D、是二元二次方程,故本选项错误;
    故选:C.
    【点睛】
    本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键.
    8、B
    【解析】
    分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.
    详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;
    根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;
    根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;
    根据同底数幂的除法,可知b6÷b2=b4,不正确.
    故选B.
    点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.
    9、A
    【解析】
    试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.
    考点:科学记数法—表示较小的数.
    10、D
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,故①成立;
    AD∥BC,故③成立;
    利用排除法可得②与④不一定成立,
    ∵当四边形是菱形时,②和④成立.
    故选D.
    11、A
    【解析】
    过C作CE⊥AB,
    Rt△ACE中,
    ∵∠CAD=60°,AC=15m,
    ∴∠ACE=30°,AE=AC=×15=7.5m,CE=AC•cos30°=15×=,
    ∵∠BAC=30°,∠ACE=30°,
    ∴∠BCE=60°,
    ∴BE=CE•tan60°=×=22.5m,
    ∴AB=BE﹣AE=22.5﹣7.5=15m,
    故选A.

    【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.
    12、D
    【解析】
    把点P的横坐标减4,纵坐标减3可得P1的坐标;
    让点P的纵坐标不变,横坐标为原料坐标的相反数可得P2的坐标;
    让点P的纵坐标的相反数为P3的横坐标,横坐标为P3的纵坐标即可.
    【详解】
    ∵点P(3,4),将点P先向左平移4个单位,再向下平移3个单位得到点P1,∴P1的坐标为(﹣1,1).
    ∵点P关于y轴的对称点是P2,∴P2(﹣3,4).
    ∵将点P绕原点O按逆时针方向旋转90°得到点P3,∴P3(﹣4,3).
    故选D.
    【点睛】
    本题考查了坐标与图形的变化;用到的知识点为:左右平移只改变点的横坐标,左减右加,上下平移只改变点的纵坐标,上加下减;两点关于y轴对称,纵坐标不变,横坐标互为相反数;(a,b)绕原点O按逆时针方向旋转90°得到的点的坐标为(﹣b,a).

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、﹣1
    【解析】
    根据根与系数的关系得出b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n>2,再去绝对值符号,即可得出答案.
    【详解】
    解:∵关于x的方程x2−2x+n=1没有实数根,
    ∴b2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,
    ∴n>2,
    ∴|2−n |-│1-n│=n-2-n+1=-1.
    故答案为-1.
    【点睛】
    本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.
    14、π.
    【解析】
    由等边三角形的性质证明△AEB≌△CFA可以得出∠APB=120°,点P的路径是一段弧,由弧线长公式就可以得出结论.
    【详解】
    :∵△ABC为等边三角形,
    ∴AB=AC,∠C=∠CAB=60°,
    又∵AE=CF,
    在△ABE和△CAF中,

    ∴△ABE≌△CAF(SAS),
    ∴∠ABE=∠CAF.
    又∵∠APE=∠BPF=∠ABP+∠BAP,
    ∴∠APE=∠BAP+∠CAF=60°.
    ∴∠APB=180°-∠APE=120°.
    ∴当AE=CF时,点P的路径是一段弧,且∠AOB=120°,
    又∵AB=6,
    ∴OA=2,
    点P的路径是l=,
    故答案为.
    【点睛】
    本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,弧线长公式的运用,解题的关键是证明三角形全等.
    15、1或1﹣2
    【解析】
    当点P在AF上时,由翻折的性质可求得PF=FC=1,然后再求得正方形的对角线AF的长,从而可得到PA的长;当点P在BE上时,由正方形的性质可知BP为AF的垂直平分线,则AP=PF,由翻折的性质可求得PF=FC=1,故此可得到AP的值.
    【详解】
    解:如图1所示:

    由翻折的性质可知PF=CF=1,
    ∵ABFE为正方形,边长为2,
    ∴AF=2.
    ∴PA=1﹣2.
    如图2所示:

    由翻折的性质可知PF=FC=1.
    ∵ABFE为正方形,
    ∴BE为AF的垂直平分线.
    ∴AP=PF=1.
    故答案为:1或1﹣2.
    【点睛】
    本题主要考查的是翻折的性质、正方形的性质的应用,根据题意画出符合题意的图形是解题的关键.
    16、-2
    【解析】
    试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.
    考点:一次函数图象与系数的关系.
    17、1.
    【解析】
    连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.
    【详解】
    连接BD,如图,

    ∵AD为△ABC的外接圆⊙O的直径,
    ∴∠ABD=90°,
    ∴∠D=90°﹣∠BAD=90°﹣50°=1°,
    ∴∠ACB=∠D=1°.
    故答案为1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.
    18、
    【解析】
    试题分析:因为OC=OA,所以∠ACO=,所以∠AOC=45°,又直径垂直于弦,,所以CE=,所以CD=2CE=.
    考点:1.解直角三角形、2.垂径定理.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=x2+x;(2)t=-4,r=-1.
    【解析】
    (1)由①联立方程组,根据抛物线y=ax2+bx与直线y=x只有一个交点可以求出b的值,由②可得对称轴为x=1,从而得a的值,进而得出结论;
    (2)进行分类讨论,分别求出t和r的值.
    【详解】
    (1)y=ax2+bx和y=x联立得:ax2+(b+1)x=0,
    Δ=0得:(b-1)2=0,得b=1,
    ∵对称轴为=1,
    ∴=1,
    ∴a=,
    ∴y=x2+x.
    (2)因为y=x2+x=(x-1)2+,
    所以顶点(1,)
    当-2

    相关试卷

    2023-2024学年河南省三门峡市灵宝市八年级上册期中数学试题(含解析):

    这是一份2023-2024学年河南省三门峡市灵宝市八年级上册期中数学试题(含解析),共17页。

    河南省三门峡市灵宝市2023-2024学年八年级上册期中数学试题(含解析):

    这是一份河南省三门峡市灵宝市2023-2024学年八年级上册期中数学试题(含解析),共16页。试卷主要包含了选择题,解答下列各题等内容,欢迎下载使用。

    2023年河南省三门峡市灵宝市中考数学二模试卷(含解析):

    这是一份2023年河南省三门峡市灵宝市中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map