2021-2022学年黑龙江省大兴安岭达标名校中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A11B11C11D11E11F11的边长为( )
A. B. C. D.
2.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为( )
A. B. C. D.
3.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )
A. B. C. D.4
4.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为( )
A.30° B.60° C.120° D.180°
5.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( )
A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×106
6.下列运算正确的是( )
A. B.
C.a2•a3=a5 D.(2a)3=2a3
7.下列计算,正确的是( )
A.a2•a2=2a2 B.a2+a2=a4 C.(﹣a2)2=a4 D.(a+1)2=a2+1
8.如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是( )
A. B. C. D.
9.下图是某几何体的三视图,则这个几何体是( )
A.棱柱 B.圆柱 C.棱锥 D.圆锥
10.如下图所示,该几何体的俯视图是 ( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
12.若am=5,an=6,则am+n=________.
13.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.
14.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.
15.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”
用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.
16.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_____环的成绩.
17.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.
三、解答题(共7小题,满分69分)
18.(10分)我们知道中,如果,,那么当时,的面积最大为6;
(1)若四边形中,,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.
(2)已知四边形中,,求为多少时,四边形面积最大?并求出最大面积是多少?
19.(5分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.
(1)求甲、乙2名学生在不同书店购书的概率;
(2)求甲、乙、丙3名学生在同一书店购书的概率.
20.(8分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
21.(10分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)
22.(10分)如图,AB为⊙O直径,C为⊙O上一点,点D是的中点,DE⊥AC于E,DF⊥AB于F.
(1)判断DE与⊙O的位置关系,并证明你的结论;
(2)若OF=4,求AC的长度.
23.(12分)如图,一次函数y=ax﹣1的图象与反比例函数的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=
(1)求a,k的值及点B的坐标;
(2)观察图象,请直接写出不等式ax﹣1≥的解集;
(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.
24.(14分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.
(1)求证:AE=BF;
(2)连接GB,EF,求证:GB∥EF;
(3)若AE=1,EB=2,求DG的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=()10×2,然后化简即可.
详解:连接OE1,OD1,OD2,如图,
∵六边形A1B1C1D1E1F1为正六边形,
∴∠E1OD1=60°,
∴△E1OD1为等边三角形,
∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,
∴OD2⊥E1D1,
∴OD2=E1D1=×2,
∴正六边形A2B2C2D2E2F2的边长=×2,
同理可得正六边形A3B3C3D3E3F3的边长=()2×2,
则正六边形A11B11C11D11E11F11的边长=()10×2=.
故选A.
点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.
2、A
【解析】
根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“Sn=()n﹣2”,依此规律即可得出结论.
【详解】
如图所示,
∵正方形ABCD的边长为2,△CDE为等腰直角三角形,
∴DE2+CE2=CD2,DE=CE,
∴2S2=S1.
观察,发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,…,
∴Sn=()n﹣2.
当n=2018时,S2018=()2018﹣2=()3.
故选A.
【点睛】
本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“Sn=()n﹣2”.
3、A
【解析】
试题分析:由题意易知:∠CAB=41°,∠ACD=30°.
若旋转角度为11°,则∠ACO=30°+11°=41°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AO=OC=2.
在Rt△AOD1中,OD1=CD1-OC=3,
由勾股定理得:AD1=.
故选A.
考点: 1.旋转;2.勾股定理.
4、C
【解析】
求出正三角形的中心角即可得解
【详解】
正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,
故选C.
【点睛】
本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键
5、C
【解析】
解:,故选C.
6、C
【解析】
根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断.
【详解】
解:A、=2,此选项错误;
B、不能进一步计算,此选项错误;
C、a2•a3=a5,此选项正确;
D、(2a)3=8a3,此选项计算错误;
故选:C.
【点睛】
本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则.
7、C
【解析】
解:A.故错误;
B. 故错误;
C.正确;
D.
故选C.
【点睛】
本题考查合并同类项,同底数幂相乘;幂的乘方,以及完全平方公式的计算,掌握运算法则正确计算是解题关键.
8、D
【解析】
作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),
∴OD=AE=5,
,
∴正方形的面积是: ,故选D.
9、D
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.
故选D.
【点睛】
本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.
10、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
从上面看是三个长方形,故B是该几何体的俯视图.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
二、填空题(共7小题,每小题3分,满分21分)
11、①②④
【解析】
试题解析:①∵F是AD的中点,
∴AF=FD,
∵在▱ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=∠BCD,故此选项正确;
延长EF,交CD延长线于M,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故②正确;
③∵EF=FM,
∴S△EFC=S△CFM,
∵MC>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF错误;
④设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此选项正确.
考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.
12、1.
【解析】
根据同底数幂乘法性质am·an=am+n,即可解题.
【详解】
解:am+n= am·an=5×6=1.
【点睛】
本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.
13、8
【解析】
如图,连接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解决问题.
【详解】
解:如图,连接OC.
∵AB是⊙O切线,
∴OC⊥AB,AC=BC,
在Rt△ACO中,∵∠ACO=90°,OC=OD=2
tan∠OAB=,
∴,
∴AC=4,
∴AB=2AC=8,
故答案为8
【点睛】
本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.
14、1-1.
【解析】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解.
【详解】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.
∵AB=AC=2,∠BAC=120°,
∴∠ACB=∠B=∠ACF=10°,
∴∠ECG=60°.
∵CF=BD=2CE,
∴CG=CE,
∴△CEG为等边三角形,
∴EG=CG=FG,
∴∠EFG=∠FEG=∠CGE=10°,
∴△CEF为直角三角形.
∵∠BAC=120°,∠DAE=60°,
∴∠BAD+∠CAE=60°,
∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.
在△ADE和△AFE中,
,
∴△ADE≌△AFE(SAS),
∴DE=FE.
设EC=x,则BD=CF=2x,DE=FE=6-1x,
在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,
EF==x,
∴6-1x=x,
x=1-,
∴DE=x=1-1.
故答案为:1-1.
【点睛】
本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.
15、
【解析】
分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.
详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.
∵∠C+∠KDC=90°,∴∠C=∠HDA.
∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,
∴CK:KD=HD:HA,∴CK:100=100:15,
解得:CK=.
故答案为:.
点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.
16、8
【解析】
为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.
设第8次射击环数为x环,根据题意列出一元一次不等式
62+x+2×10>89
解之,得
x>7
x表示环数,故x为正整数且x>7,则
x的最小值为8
即第8次至少应打8环.
点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”——不等式,再由不等式的相关知识确定问题的答案.
17、
【解析】
利用特殊三角形的三边关系,求出AM,AE长,求比值.
【详解】
解:如图所示,设BC=x,
∵在Rt△ABC中,∠B=90°,∠A=30°,
∴AC=2BC=2x,AB=BC=x,
根据题意得:AD=BC=x,AE=DE=AB=x,
如图,作EM⊥AD于M,则AM=AD=x,
在Rt△AEM中,cos∠EAD=,
故答案为:.
【点睛】
特殊三角形: 30°-60°-90°特殊三角形,三边比例是1::2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.
三、解答题(共7小题,满分69分)
18、 (1)当,时有最大值1;(2)当时,面积有最大值32.
【解析】
(1)由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,由此即可解决问题.
(2)设BD=x,由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题.
【详解】
(1) 由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
最大面积为×6×(16-6)=1.
故当,时有最大值1;
(2)当,时有最大值,
设, 由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
∴抛物线开口向下
∴当 时,面积有最大值32.
【点睛】
本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.
19、(1)P=;(2)P=.
【解析】
试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:
从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,
所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=;
(2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:
从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,
所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.
点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
20、(1)甲80件,乙20件;(2)x≤90
【解析】
(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
【详解】
解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得30x+20(100﹣x)=2800,
解得x=80,
则100﹣x=20,
答:甲种奖品购买了80件,乙种奖品购买了20件;
(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得:30x+20(100﹣x)≤2900,
解得:x≤90,
【点睛】
本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
21、小时
【解析】
过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.
【详解】
解:如图,过点C作CD⊥AB交AB延长线于D.
在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,
∴CD=AC=40海里.
在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,
∴BC=≈=50(海里),
∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).
考点:解直角三角形的应用-方向角问题
22、(1)DE与⊙O相切,证明见解析;(2)AC=8.
【解析】
(1)解:(1)DE与⊙O相切.
证明:连接OD、AD,
∵点D是的中点,
∴=,
∴∠DAO=∠DAC,
∵OA=OD,
∴∠DAO=∠ODA,
∴∠DAC=∠ODA,
∴OD∥AE,
∵DE⊥AC,
∴DE⊥OD,
∴DE与⊙O相切.
(2) 连接BC,根据△ODF与△ABC相似,求得AC的长.AC=8
23、(1)a= ,k=3, B(-,-2) (2) ﹣≤x<0或x≥3;(3) (0,)或(0,0)
【解析】
1)过A作AE⊥x轴,交x轴于点E,在Rt△AOE中,根据tan∠AOC的值,设AE=x,得到OE=3x,再由OA的长,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出A坐标,将A坐标代入一次函数解析式求出a的值,代入反比例解析式求出k的值,联立一次函数与反比例函数解析式求出B的坐标;
(2)由A与B交点横坐标,根据函数图象确定出所求不等式的解集即可;
(3)显然P与O重合时,满足△PDC与△ODC相似;当PC⊥CD,即∠PCD=时,满足三角形PDC与三角形CDO相等,利用同角的余角相等得到一对角相等,再由一对直角相等得到三角形PCO与三角形CDO相似,由相 似得比例,根据OD,OC的长求出OP的长,即可确定出P的坐标.
【详解】
解:(1)
过A作AE⊥x轴,交x轴于点E,
在Rt△AOE中,OA=,tan∠AOC=,
设AE=x,则OE=3x,
根据勾股定理得:OA2=OE2+AE2,即10=9x2+x2,
解得:x=1或x=﹣1(舍去),
∴OE=3,AE=1,即A(3,1),
将A坐标代入一次函数y=ax﹣1中,得:1=3a﹣1,即a=,
将A坐标代入反比例解析式得:1=,即k=3,
联立一次函数与反比例解析式得:,
消去y得: x﹣1=,
解得:x=﹣或x=3,
将x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);
(2)由A(3,1),B(﹣,﹣2),
根据图象得:不等式x﹣1≥的解集为﹣≤x<0或x≥3;
(3)显然P与O重合时,△PDC∽△ODC;
当PC⊥CD,即∠PCD=90°时,∠PCO+∠DCO=90°,
∵∠PCD=∠COD=90°,∠PCD=∠CDO,
∴△PDC∽△CDO,
∵∠PCO+∠CPO=90°,
∴∠DCO=∠CPO,
∵∠POC=∠COD=90°,
∴△PCO∽△CDO,
∴=,
对于一次函数解析式y=x﹣1,令x=0,得到y=﹣1;令y=0,得到x=,
∴C(,0),D(0,﹣1),即OC=,OD=1,
∴=,即OP=,
此时P坐标为(0,),
综上,满足题意P的坐标为(0,)或(0,0).
【点睛】
此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,一次函数与反比例函数的交点问题,坐标与图形性质,勾股定理,锐角三角函数定义,相似三角形的判定与性质,利用了数形结合的思想,熟练运用数形结合思想是解题的关键.
24、(1)详见解析;(2)详见解析;(3).
【解析】
(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;
(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.
(1)证明:连接BD,
在Rt△ABC中,∠ABC=90°,AB=BC,
∴∠A=∠C=45°,
∵AB为圆O的直径,
∴∠ADB=90°,即BD⊥AC,
∴AD=DC=BD=AC,∠CBD=∠C=45°,
∴∠A=∠FBD,
∵DF⊥DG,
∴∠FDG=90°,
∴∠FDB+∠BDG=90°,
∵∠EDA+∠BDG=90°,
∴∠EDA=∠FDB,
在△AED和△BFD中,
∠A=∠FBD,AD=BD,∠EDA=∠FDB,
∴△AED≌△BFD(ASA),
∴AE=BF;
(2)证明:连接EF,BG,
∵△AED≌△BFD,
∴DE=DF,
∵∠EDF=90°,
∴△EDF是等腰直角三角形,
∴∠DEF=45°,
∵∠G=∠A=45°,
∴∠G=∠DEF,
∴GB∥EF;
(3)∵AE=BF,AE=1,
∴BF=1,
在Rt△EBF中,∠EBF=90°,
∴根据勾股定理得:EF2=EB2+BF2,
∵EB=2,BF=1,
∴EF=,
∵△DEF为等腰直角三角形,∠EDF=90°,
∴cos∠DEF=,
∵EF=,
∴DE=×,
∵∠G=∠A,∠GEB=∠AED,
∴△GEB∽△AED,
∴,即GE•ED=AE•EB,
∴•GE=2,即GE=,
则GD=GE+ED=.
湖北省省直辖县重点达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份湖北省省直辖县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了方程的解是.等内容,欢迎下载使用。
黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列事件中必然发生的事件是等内容,欢迎下载使用。
黑龙江省大庆市杜尔伯特县重点达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份黑龙江省大庆市杜尔伯特县重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共21页。试卷主要包含了计算的结果是等内容,欢迎下载使用。