2021-2022学年河南省郑州市名校联考中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )
A. B. C. D.
2.如果(x-2)(x+3)=x2+px+q,那么p、q的值是( )
A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-6
3.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是( )
A.平均数 B.众数 C.中位数 D.方差
4.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是( )
A.40° B.43° C.46° D.54°
5.如图,在矩形 ABCD 中,AB=2a,AD=a,矩形边上一动点 P 沿 A→B→C→D 的路径移动.设点 P 经过的路径长为 x,PD2=y,则下列能大致反映 y 与 x 的函数关系的图象是( )
A. B.
C. D.
6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
7.计算﹣的结果为( )
A. B. C. D.
8.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )
A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
9.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为( )
A.0.334 B. C. D.
10.如图,已知AB∥CD,DE⊥AF,垂足为E,若∠CAB=50°,则∠D的度数为( )
A.30° B.40° C.50° D.60°
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为______.
12.如图,在四边形ABCD中,AC、BD是对角线,AC=AD,BC>AB,AB∥CD,AB=4,BD=2,tan∠BAC=3,则线段BC的长是_____.
13.分解因式:2x2-8x+8=__________.
14.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.
15.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.
16.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则的值等于_____
17.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为 .
三、解答题(共7小题,满分69分)
18.(10分)边长为6的等边△ABC 中,点D ,E 分别在AC ,BC 边上,DE∥AB,EC =2
如图1,将△DEC 沿射线EC 方向平移,得到△D′E′C′,边D′E′与AC 的交点为M ,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC 绕点C 旋转∠α(0°<α<360°),得到△D ′E′C,连接AD′,BE′.边D′E′的中点为P.
①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;
②连接AP ,当AP 最大时,求AD′的值.(结果保留根号)
19.(5分)如图,点A.F、C.D在同一直线上,点B和点E分别在直线AD的两侧,且
AB=DE,∠A=∠D,AF=DC.
(1)求证:四边形BCEF是平行四边形,
(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.
20.(8分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:
⑴补全条形统计图,“体育”对应扇形的圆心角是 度;
⑵根据以上统计分析,估计该校名学生中喜爱“娱乐”的有 人;
⑶在此次问卷调查中,甲、乙两班分别有人喜爱新闻节目,若从这人中随机抽取人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的人来自不同班级的概率
21.(10分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)
22.(10分)为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示.
时间段(小时/周)
小丽抽样(人数)
小杰抽样(人数)
0~1
6
22
1~2
10
10
2~3
16
6
3~4
8
2
(1)你认为哪位学生抽取的样本不合理?请说明理由.专家建议每周上网2小时以上(含2小时)的学生应适当减少上网的时间,估计该校全体初二学生中有多少名学生应适当减少上网的时间.
23.(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.
(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;
(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;
(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.
24.(14分)如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,
(1)求k的值;
(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据抛物线和直线的关系分析.
【详解】
由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.
故选D
【点睛】
考核知识点:反比例函数图象.
2、B
【解析】
先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.
【详解】
解:∵(x-2)(x+3)=x2+x-1,
又∵(x-2)(x+3)=x2+px+q,
∴x2+px+q=x2+x-1,
∴p=1,q=-1.
故选:B.
【点睛】
本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.
3、D
【解析】
A. ∵原平均数是:(1+2+3+3+4+1) ÷6=3;
添加一个数据3后的平均数是:(1+2+3+3+4+1+3) ÷7=3;
∴平均数不发生变化.
B. ∵原众数是:3;
添加一个数据3后的众数是:3;
∴众数不发生变化;
C. ∵原中位数是:3;
添加一个数据3后的中位数是:3;
∴中位数不发生变化;
D. ∵原方差是:;
添加一个数据3后的方差是:;
∴方差发生了变化.
故选D.
点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.
4、C
【解析】
根据DE∥AB可求得∠CDE=∠B解答即可.
【详解】
解:∵DE∥AB,
∴∠CDE=∠B=46°,
故选:C.
【点睛】
本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.
5、D
【解析】
解:(1)当0≤t≤2a时,∵,AP=x,∴;
(2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵,∴=;
(3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;
综上,可得,∴能大致反映y与x的函数关系的图象是选项D中的图象.故选D.
6、D
【解析】
根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
【详解】
设每枚黄金重x两,每枚白银重y两,
由题意得:,
故选:D.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
7、A
【解析】
根据分式的运算法则即可
【详解】
解:原式=,
故选A.
【点睛】
本题主要考查分式的运算。
8、D
【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
详解:将数据重新排列为17、18、18、20、20、20、23,
所以这组数据的众数为20分、中位数为20分,
故选:D.
点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
9、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解:334亿=3.34×1010
“点睛”此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、B
【解析】
试题解析:∵AB∥CD,且
∴在中,
故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、4
【解析】
分析:首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.
详解:设△ABP中AB边上的高是h.
∵S△PAB=S矩形ABCD,
∴AB•h=AB•AD,
∴h=AD=2,
∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.
在Rt△ABE中,∵AB=4,AE=2+2=4,
∴BE=,
即PA+PB的最小值为4.
故答案为4.
点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
12、6
【解析】
作DE⊥AB,交BA的延长线于E,作CF⊥AB,可得DE=CF,且AC=AD,可证Rt△ADE≌Rt△AFC,可得AE=AF,∠DAE=∠BAC,根据tan∠BAC=∠DAE=,可设DE=3a,AE=a,根据勾股定理可求a的值,由此可得BF,CF的值.再根据勾股定理求BC的长.
【详解】
如图:
作DE⊥AB,交BA的延长线于E,作CF⊥AB,
∵AB∥CD,DE⊥AB⊥,CF⊥AB
∴CF=DE,且AC=AD
∴Rt△ADE≌Rt△AFC
∴AE=AF,∠DAE=∠BAC
∵tan∠BAC=3
∴tan∠DAE=3
∴设AE=a,DE=3a
在Rt△BDE中,BD2=DE2+BE2
∴52=(4+a)2+27a2
解得a1=1,a2=-(不合题意舍去)
∴AE=1=AF,DE=3=CF
∴BF=AB-AF=3
在Rt△BFC中,BC==6
【点睛】
本题是解直角三角形问题,恰当地构建辅助线是本题的关键,利用三角形全等证明边相等,并借助同角的三角函数值求线段的长,与勾股定理相结合,依次求出各边的长即可.
13、2(x-2)2
【解析】
先运用提公因式法,再运用完全平方公式.
【详解】
:2x2-8x+8=.
故答案为2(x-2)2.
【点睛】
本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
14、k≥-1
【解析】
首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.
【详解】
当时,方程是一元一次方程:,方程有实数根;
当时,方程是一元二次方程,
解得:且.
综上所述,关于的方程有实数根,则的取值范围是.
故答案为
【点睛】
考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略
这种情况.
15、3
【解析】
试题分析:因为等腰△ABC的周长为33,底边BC=5,所以AB=AC=8,又DE垂直平分AB,所以AE=BE,所以△BEC的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.
考点:3.等腰三角形的性质;3.垂直平分线的性质.
16、
【解析】
根据平行线分线段成比例定理解答即可.
【详解】
解:∵DE∥BC,AD=2BD,
∴,
∵EF∥AB,
∴,
故答案为.
【点睛】
本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
17、2
【解析】
如图,过A点作AE⊥y轴,垂足为E,
∵点A在双曲线上,∴四边形AEOD的面积为1
∵点B在双曲线上,且AB∥x轴,∴四边形BEOC的面积为3
∴四边形ABCD为矩形,则它的面积为3-1=2
三、解答题(共7小题,满分69分)
18、 (1) 当CC'=时,四边形MCND'是菱形,理由见解析;(2)①AD'=BE',理由见解析;②.
【解析】
(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';
(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE'即可得出结论;
②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.
【详解】
(1)当CC'=时,四边形MCND'是菱形.
理由:由平移的性质得,CD∥C'D',DE∥D'E',
∵△ABC是等边三角形,
∴∠B=∠ACB=60°,
∴∠ACC'=180°-∠ACB=120°,
∵CN是∠ACC'的角平分线,
∴∠D'E'C'=∠ACC'=60°=∠B,
∴∠D'E'C'=∠NCC',
∴D'E'∥CN,
∴四边形MCND'是平行四边形,
∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
∴△MCE'和△NCC'是等边三角形,
∴MC=CE',NC=CC',
∵E'C'=2,
∵四边形MCND'是菱形,
∴CN=CM,
∴CC'=E'C'=;
(2)①AD'=BE',
理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',
由(1)知,AC=BC,CD'=CE',
∴△ACD'≌△BCE',
∴AD'=BE',
当α=180°时,AD'=AC+CD',BE'=BC+CE',
即:AD'=BE',
综上可知:AD'=BE'.
②如图连接CP,
在△ACP中,由三角形三边关系得,AP<AC+CP,
∴当点A,C,P三点共线时,AP最大,
如图1,
在△D'CE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
∴CP=3,
∴AP=6+3=9,
在Rt△APD'中,由勾股定理得,AD'=.
【点睛】
此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND'是平行四边形,解(2)的关键是判断出点A,C,P三点共线时,AP最大.
19、(1)见解析
(2)当AF=时,四边形BCEF是菱形.
【解析】
(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.
(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.
【详解】
(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.
∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,
∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.
∴四边形BCEF是平行四边形.
(2)解:连接BE,交CF与点G,
∵四边形BCEF是平行四边形,
∴当BE⊥CF时,四边形BCEF是菱形.
∵∠ABC=90°,AB=4,BC=3,
∴AC=.
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.
∴,即.∴.
∵FG=CG,∴FC=2CG=,
∴AF=AC﹣FC=5﹣.
∴当AF=时,四边形BCEF是菱形.
20、(1)72;(2)700;(3).
【解析】试题分析:(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.
试题解析:
(1)调查的学生总数为60÷30%=200(人),
则体育类人数为200﹣(30+60+70)=40,
补全条形图如下:
“体育”对应扇形的圆心角是360°×=72°;
(2)估计该校2000名学生中喜爱“娱乐”的有:2000×=700(人),
(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:
所以P(2名学生来自不同班)=.
考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.
21、2.7米
【解析】
解:作BF⊥DE于点F,BG⊥AE于点G
在Rt△ADE中
∵tan∠ADE=,
∴DE="AE" ·tan∠ADE=15
∵山坡AB的坡度i=1:,AB=10
∴BG=5,AG=,
∴EF=BG=5,BF=AG+AE=+15
∵∠CBF=45°
∴CF=BF=+15
∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7
答:这块宣传牌CD的高度为2.7米.
22、(1)小丽;(2)80
【解析】
解:(1)小丽;因为她没有从全校初二学生中随机进行抽查,不具有随机性与代表性.
(2).
答:该校全体初二学生中有80名同学应适当减少上网的时间.
23、(1)DD′=1,A′F= 4﹣;(2);(1).
【解析】
(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',只要证明△CDD′是等边三角形即可解决问题;
②如图①中,连接CF,在Rt△CD′F中,求出FD′即可解决问题;
(2)由△A′DF∽△A′D′C,可推出DF的长,同理可得△CDE∽△CB′A′,可求出DE的长,即可解决问题;
(1)如图③中,作FG⊥CB′于G,由S△ACF=•AC•CF=•AF•CD,把问题转化为求AF•CD,只要证明∠ACF=90°,证明△CAD∽△FAC,即可解决问题;
【详解】
解:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',
∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.
∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,
∴DD′=CD=1.
②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,
∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.
在Rt△CD′F中,∵tan∠D′CF=,
∴D′F=,∴A′F=A′D′﹣D′F=4﹣.
(2)如图②中,在Rt△A′CD′中,∵∠D′=90°,
∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,
∴△A′DF∽△A′D′C,∴,∴,
∴DF=.
同理可得△CDE∽△CB′A′,∴,∴,
∴ED=,∴EF=ED+DF=.
(1)如图③中,作FG⊥CB′于G.∵四边形A′B′CD′是矩形,∴GF=CD′=CD=1.
∵S△CEF=•EF•DC=•CE•FG,
∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.
∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,
∴AC2=AD•AF,∴AF=.
∵S△ACF=•AC•CF=•AF•CD,
∴AC•CF=AF•CD=.
24、(1)32;(2)x<﹣4或0<x<4;(3)点P的坐标是P(﹣7+,14+2);或P(7+,﹣14+2).
【解析】
分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;
(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.
(3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即1.可根据双曲线的解析式设出P点的坐标,然后表示出△POA的面积,由于△POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标.
详解:(1)∵点A在正比例函数y=2x上,
∴把x=4代入正比例函数y=2x,
解得y=8,∴点A(4,8),
把点A(4,8)代入反比例函数y=,得k=32,
(2)∵点A与B关于原点对称,
∴B点坐标为(﹣4,﹣8),
由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x<﹣8或0<x<8;
(3)∵反比例函数图象是关于原点O的中心对称图形,
∴OP=OQ,OA=OB,
∴四边形APBQ是平行四边形,
∴S△POA=S平行四边形APBQ×=×224=1,
设点P的横坐标为m(m>0且m≠4),
得P(m,),
过点P、A分别做x轴的垂线,垂足为E、F,
∵点P、A在双曲线上,
∴S△POE=S△AOF=16,
若0<m<4,如图,
∵S△POE+S梯形PEFA=S△POA+S△AOF,
∴S梯形PEFA=S△POA=1.
∴(8+)•(4﹣m)=1.
∴m1=﹣7+3,m2=﹣7﹣3(舍去),
∴P(﹣7+3,16+);
若m>4,如图,
∵S△AOF+S梯形AFEP=S△AOP+S△POE,
∴S梯形PEFA=S△POA=1.
∴×(8+)•(m﹣4)=1,
解得m1=7+3,m2=7﹣3(舍去),
∴P(7+3,﹣16+).
∴点P的坐标是P(﹣7+3,16+);或P(7+3,﹣16+).
点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.利用数形结合的思想,求得三角形的面积.
河南省南阳南召县联考2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份河南省南阳南召县联考2021-2022学年中考数学最后冲刺模拟试卷含解析,共23页。
河南省固始县重点达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份河南省固始县重点达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共22页。
安徽省宿州市名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份安徽省宿州市名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,当函数y=,如图,将一正方形纸片沿图等内容,欢迎下载使用。