2021-2022学年河南省郑州枫杨外国语校中考数学四模试卷含解析
展开
这是一份2021-2022学年河南省郑州枫杨外国语校中考数学四模试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列运算正确的是( )
A.a﹣3a=2aB.(ab2)0=ab2C.=D.×=9
2.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是( )
A.=B.=C.=D.=
3.2018的相反数是( )
A.B.2018C.-2018D.
4.在0.3,﹣3,0,﹣这四个数中,最大的是( )
A.0.3B.﹣3C.0D.﹣
5.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
根据列表,可以估计出 m 的值是( )
A.5B.10C.15D.20
6.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为( )
A.54°B.64°C.74°D.26°
7.对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,,则的值为( )
A.-1B.-11C.1D.11
8.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )
A.30°B.15°C.18°D.20°
9.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )
A.O1B.O2C.O3D.O4
11.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )
A.3,-1B.1,-3C.-3,1D.-1,3
12.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是( )
A.相交B.相切C.相离D.不能确定
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.正多边形的一个外角是60°,边长是2,则这个正多边形的面积为___________ .
14.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.
15.如图,在平面直角坐标系中,函数y=(x>0)的图象经过矩形OABC的边AB、BC的中点E、F,则四边形OEBF的面积为________.
16.方程的解是_____.
17.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.
18.当x ________ 时,分式 有意义.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:
请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人.
20.(6分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过点D作DE⊥AC,垂足为E.
(1)证明:DE为⊙O的切线;
(2)连接DC,若BC=4,求弧DC与弦DC所围成的图形的面积.
21.(6分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.
(1)按如下分数段整理、描述这两组数据:
(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:
(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.
22.(8分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是 ;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.
23.(8分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.
24.(10分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:
(1)本次被调查的学生的人数为 ;
(2)补全条形统计图
(3)扇形统计图中,类所在扇形的圆心角的度数为 ;
(4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多少名.
25.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:
(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;
(2)补全条形统计图;
(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?
26.(12分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.
(1)求直线和双曲线的函数表达式;
(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,
①当点C在双曲线上时,求t的值;
②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;
③当时,请直接写出t的值.
27.(12分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.
【详解】
解:A、a﹣3a=﹣2a,故此选项错误;
B、(ab2)0=1,故此选项错误;
C、故此选项错误;
D、×=9,正确.
故选D.
【点睛】
此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.
2、D
【解析】
根据平行线分线段成比例定理的逆定理,当或时,,然后可对各选项进行判断.
【详解】
解:当或时,,
即或.
所以D选项是正确的.
【点睛】
本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.
3、C
【解析】
【分析】根据只有符号不同的两个数互为相反数进行解答即可得.
【详解】2018与-2018只有符号不同,
由相反数的定义可得2018的相反数是-2018,
故选C.
【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.
4、A
【解析】
根据正数大于0,0大于负数,正数大于负数,比较即可
【详解】
∵-3<-<0<0.3
∴最大为0.3
故选A.
【点睛】
本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.
5、B
【解析】
由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.
【详解】
解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,
故选择B.
【点睛】
本题考查了概率公式的应用.
6、B
【解析】
根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
【详解】
∵四边形ABCD为菱形,
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=26°,
∴∠BCA=∠DAC=26°,
∴∠OBC=90°﹣26°=64°.
故选B.
【点睛】
本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.
7、B
【解析】
先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.
【详解】
由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28
所以
解这个方程组,得
所以2△2=a+b+c=-35-2c+24+c+c=-2.
故选B.
【点睛】
本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.
8、C
【解析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
【详解】
∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
∴∠1=108°-90°=18°.故选C
【点睛】
本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
9、D
【解析】
先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.
【详解】
∵点A(a,-b)在第一象限内,
∴a>0,-b>0,
∴b
相关试卷
这是一份2023年河南省郑州枫杨外国语中考数学三模试卷及答案,共8页。
这是一份河南省郑州枫杨外国语中学2021-2022学年中考联考数学试卷含解析,共24页。试卷主要包含了单项式2a3b的次数是等内容,欢迎下载使用。
这是一份2021-2022学年河南省郑州市郑州枫杨外国语校中考联考数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,-3的相反数是,函数y=中自变量x的取值范围是,学校小组名同学的身高等内容,欢迎下载使用。