年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年黑龙江齐齐哈尔市泰来县中考数学考前最后一卷含解析

    2021-2022学年黑龙江齐齐哈尔市泰来县中考数学考前最后一卷含解析第1页
    2021-2022学年黑龙江齐齐哈尔市泰来县中考数学考前最后一卷含解析第2页
    2021-2022学年黑龙江齐齐哈尔市泰来县中考数学考前最后一卷含解析第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年黑龙江齐齐哈尔市泰来县中考数学考前最后一卷含解析

    展开

    这是一份2021-2022学年黑龙江齐齐哈尔市泰来县中考数学考前最后一卷含解析,共28页。试卷主要包含了计算的正确结果是,运用乘法公式计算等内容,欢迎下载使用。
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是( )
    A.74B.44C.42D.40
    2.如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分∠BED,则BE的长为( )
    A.B.C.D.4﹣
    3.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为( )
    A.(,0)B.(2,0)C.(,0)D.(3,0)
    4.若一次函数的图像过第一、三、四象限,则函数( )
    A.有最大值B.有最大值C.有最小值D.有最小值
    5.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )
    A.m<1B.m>﹣1C.m>1D.m<﹣1
    6.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是( )
    A.75°B.65°C.60°D.50°
    7.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )
    A.B.C.D.
    8.如图,直线a∥b,直线分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是
    A.50°B.70°C.80°D.110°
    9.计算的正确结果是( )
    A.B.-C.1D.﹣1
    10.运用乘法公式计算(3﹣a)(a+3)的结果是( )
    A.a2﹣6a+9B.a2﹣9C.9﹣a2D.a2﹣3a+9
    11.下列计算正确的是
    A.B.C. D.
    12.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分的面积为( )
    A.1+B.1+
    C.2sin20°+D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.
    14.如图,二次函数y=a(x﹣2)2+k(a>0)的图象过原点,与x轴正半轴交于点A,矩形OABC的顶点C的坐标为(0,﹣2),点P为x轴上任意一点,连结PB、PC.则△PBC的面积为_____.
    15.如图,数轴上点A表示的数为a,化简:a_____.
    16.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.
    17.在直角坐标系中,坐标轴上到点P(﹣3,﹣4)的距离等于5的点的坐标是 .
    18.如图,已知 OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的长.
    20.(6分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
    已知该商品的进价为每件30元,设销售该商品的每天利润为y元[求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
    21.(6分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.
    (1)求证:CD∥AB;
    (2)填空:
    ①当∠DAE= 时,四边形ADFP是菱形;
    ②当∠DAE= 时,四边形BFDP是正方形.
    22.(8分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.
    (1)如图1,线段EH、CH、AE之间的数量关系是 ;
    (2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.
    23.(8分)综合与探究
    如图,抛物线y=﹣与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD,BD.设点M运动的时间为t(t>0),请解答下列问题:
    (1)求点A的坐标与直线l的表达式;
    (2)①直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;
    ②求点M运动的过程中线段CD长度的最小值;
    (3)在点M运动的过程中,在直线l上是否存在点P,使得△BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
    24.(10分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.
    25.(10分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.
    (1)求与之间的函数关系式,并注明的取值范围;
    (2)为何值时,取最大值?最大值是多少?
    26.(12分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:
    (1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到 万人次,比2017年春节假日增加 万人次.
    (2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:
    这组数据的中位数是 万人次.
    (3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为 ,理由是 .
    (4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.
    27.(12分)如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD.BE平分∠ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.
    (1)求证:△ADC≌△FDB;
    (2)求证:
    (3)判断△ECG的形状,并证明你的结论.
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.
    考点:众数.
    2、D
    【解析】
    首先根据矩形的性质,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根据AE平分∠BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,
    ∴∠DAE=∠BEA,
    ∵AE是∠DEB的平分线,
    ∴∠BEA=∠AED,
    ∴∠DAE=∠AED,
    ∴DE=AD=4,
    再Rt△DEC中,EC===,
    ∴BE=BC-EC=4-.
    故答案选D.
    【点睛】
    本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.
    3、C
    【解析】
    过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.
    【详解】
    解:过点B作BD⊥x轴于点D,
    ∵∠ACO+∠BCD=90°,
    ∠OAC+∠ACO=90°,
    ∴∠OAC=∠BCD,
    在△ACO与△BCD中,
    ∴△ACO≌△BCD(AAS)
    ∴OC=BD,OA=CD,
    ∵A(0,2),C(1,0)
    ∴OD=3,BD=1,
    ∴B(3,1),
    ∴设反比例函数的解析式为y=,
    将B(3,1)代入y=,
    ∴k=3,
    ∴y=,
    ∴把y=2代入y=,
    ∴x=,
    当顶点A恰好落在该双曲线上时,
    此时点A移动了个单位长度,
    ∴C也移动了个单位长度,
    此时点C的对应点C′的坐标为(,0)
    故选:C.
    【点睛】
    本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.
    4、B
    【解析】
    解:∵一次函数y=(m+1)x+m的图象过第一、三、四象限,
    ∴m+1>0,m<0,即-1<m<0,
    ∴函数有最大值,
    ∴最大值为,
    故选B.
    5、C
    【解析】
    试题解析:关于的一元二次方程没有实数根,

    解得:
    故选C.
    6、B
    【解析】
    因为AB是⊙O的直径,所以求得∠ADB=90°,进而求得∠B的度数,又因为∠B=∠C,所以∠C的度数可求出.
    解:∵AB是⊙O的直径,
    ∴∠ADB=90°.
    ∵∠BAD=25°,
    ∴∠B=65°,
    ∴∠C=∠B=65°(同弧所对的圆周角相等).
    故选B.
    7、D
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A.不是中心对称图形,本选项错误;
    B.不是中心对称图形,本选项错误;
    C.不是中心对称图形,本选项错误;
    D.是中心对称图形,本选项正确.
    故选D.
    【点睛】
    本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    8、C
    【解析】
    根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
    【详解】
    因为a∥b,
    所以∠1=∠BAD=50°,
    因为AD是∠BAC的平分线,
    所以∠BAC=2∠BAD=100°,
    所以∠2=180°-∠BAC=180°-100°=80°.
    故本题正确答案为C.
    【点睛】
    本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.
    9、D
    【解析】
    根据有理数加法的运算方法,求出算式的正确结果是多少即可.
    【详解】
    原式
    故选:D.
    【点睛】
    此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:
    ①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加
    数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.③一个数同
    1相加,仍得这个数.
    10、C
    【解析】
    根据平方差公式计算可得.
    【详解】
    解:(3﹣a)(a+3)=32﹣a2=9﹣a2,
    故选C.
    【点睛】
    本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.
    11、B
    【解析】
    试题分析:根据合并同类项的法则,可知,故A不正确;
    根据同底数幂的除法,知,故B正确;
    根据幂的乘方,知,故C不正确;
    根据完全平方公式,知,故D不正确.
    故选B.
    点睛:此题主要考查了整式的混合运算,解题关键是灵活应用合并同类项法则,同底数幂的乘除法法则,幂的乘方,乘法公式进行计算.
    12、A
    【解析】
    连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.
    【详解】
    连接OT、OC,
    ∵PT切⊙O于点T,
    ∴∠OTP=90°,
    ∵∠P=20°,
    ∴∠POT=70°,
    ∵M是OP的中点,
    ∴TM=OM=PM,
    ∴∠MTO=∠POT=70°,
    ∵OT=OC,
    ∴∠MTO=∠OCT=70°,
    ∴∠OCT=180°-2×70°=40°,
    ∴∠COM=30°,
    作CH⊥AP,垂足为H,则CH=OC=1,
    S阴影=S△AOC+S扇形OCB=OA•CH+=1+,
    故选A.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    连接BD.根据圆周角定理可得.
    【详解】
    解:如图,连接BD.
    ∵AB是⊙O的直径,
    ∴∠ADB=90°,
    ∴∠B=90°﹣∠DAB=1°,
    ∴∠ACD=∠B=1°,
    故答案为1.
    【点睛】
    考核知识点:圆周角定理.理解定义是关键.
    14、4
    【解析】
    根据二次函数的对称性求出点A的坐标,从而得出BC的长度,根据点C的坐标得出三角形的高线,从而得出答案.
    【详解】
    ∵二次函数的对称轴为直线x=2, ∴点A的坐标为(4,0),∵点C的坐标为(0,-2),
    ∴点B的坐标为(4,-2), ∴BC=4,则.
    【点睛】
    本题主要考查的是二次函数的对称性,属于基础题型.理解二次函数的轴对称性是解决这个问题的关键.
    15、1.
    【解析】
    直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.
    【详解】
    由数轴可得:0<a<1,
    则a+=a+=a+(1﹣a)=1.
    故答案为1.
    【点睛】
    本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.
    16、1
    【解析】
    试题分析:如图,延长CF交AB于点G,
    ∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,
    ∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.
    又∵点D是BC中点,∴DF是△CBG的中位线.
    ∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.
    17、(0,0)或(0,﹣8)或(﹣6,0)
    【解析】
    由P(﹣3,﹣4)可知,P到原点距离为5,而以P点为圆心,5为半径画圆,圆经过原点分别与x轴、y轴交于另外一点,共有三个.
    【详解】
    解:∵P(﹣3,﹣4)到原点距离为5,
    而以P点为圆心,5为半径画圆,圆经过原点且分别交x轴、y轴于另外两点(如图所示),
    ∴故坐标轴上到P点距离等于5的点有三个:(0,0)或(0,﹣8)或(﹣6,0).
    故答案是:(0,0)或(0,﹣8)或(﹣6,0).
    18、
    【解析】
    由 OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半, 即可求得DM的长.
    【详解】
    ∵OP 平分∠AOB,∠AOB=60°,
    ∴∠AOP=∠COP=30°,
    ∵CP∥OA,
    ∴∠AOP=∠CPO,
    ∴∠COP=∠CPO,
    ∴OC=CP=2,
    ∵∠PCE=∠AOB=60°,PE⊥OB,
    ∴∠CPE=30°,



    ∵PD⊥OA,点M是OP的中点,

    故答案为:
    【点睛】
    此题考查了等腰三角形的性质与判定、含 30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出 OP 的长是解题关键.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、8+6.
    【解析】
    如图作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解决问题;
    【详解】
    解:如图作CH⊥AB于H.
    在Rt△BCH中,∵BC=12,∠B=30°,
    ∴CH=BC=6,BH==6,
    在Rt△ACH中,tanA==,
    ∴AH=8,
    ∴AC==10,
    【点睛】
    本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    20、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.
    【解析】
    (1)根据单价乘以数量,可得利润,可得答案.
    (2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.
    (3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.
    【详解】
    (1)当1≤x<50时,,
    当50≤x≤90时,,
    综上所述:.
    (2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,
    当x=45时,y最大=-2×452+180×45+2000=6050,
    当50≤x≤90时,y随x的增大而减小,
    当x=50时,y最大=6000,
    综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.
    (3)解,结合函数自变量取值范围解得,
    解,结合函数自变量取值范围解得
    所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.
    【点睛】
    本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.
    21、(1)详见解析;(2)①67.5°;②90°.
    【解析】
    (1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
    (2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
    ②根据四边形BFDP是正方形,可以求得∠DAE的度数.
    【详解】
    (1)证明:连接OD,如图所示,
    ∵射线DC切⊙O于点D,
    ∴OD⊥CD,
    即∠ODF=90°,
    ∵∠AED=45°,
    ∴∠AOD=2∠AED=90°,
    ∴∠ODF=∠AOD,
    ∴CD∥AB;
    (2)①连接AF与DP交于点G,如图所示,
    ∵四边形ADFP是菱形,∠AED=45°,OA=OD,
    ∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
    ∴∠AGE=90°,∠DAO=45°,
    ∴∠EAG=45°,∠DAG=∠PEG=22.5°,
    ∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
    故答案为:67.5°;
    ②∵四边形BFDP是正方形,
    ∴BF=FD=DP=PB,
    ∠DPB=∠PBF=∠BFD=∠FDP=90°,
    ∴此时点P与点O重合,
    ∴此时DE是直径,
    ∴∠EAD=90°,
    故答案为:90°.
    【点睛】
    本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
    22、 (1) EH2+CH2=AE2;(2)见解析.
    【解析】
    分析:(1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;
    (2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.
    详解:
    (1)EH2+CH2=AE2,
    如图1,过E作EM⊥AD于M,
    ∵四边形ABCD是菱形,
    ∴AD=CD,∠ADE=∠CDE,
    ∵EH⊥CD,
    ∴∠DME=∠DHE=90°,
    在△DME与△DHE中,

    ∴△DME≌△DHE,
    ∴EM=EH,DM=DH,
    ∴AM=CH,
    在Rt△AME中,AE2=AM2+EM2,
    ∴AE2=EH2+CH2;
    故答案为:EH2+CH2=AE2;
    (2)如图2,
    ∵菱形ABCD,∠ADC=60°,
    ∴∠BDC=∠BDA=30°,DA=DC,
    ∵EH⊥CD,
    ∴∠DEH=60°,
    在CH上截取HG,使HG=EH,
    ∵DH⊥EG,∴ED=DG,
    又∵∠DEG=60°,
    ∴△DEG是等边三角形,
    ∴∠EDG=60°,
    ∵∠EDG=∠ADC=60°,
    ∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,
    ∴∠ADE=∠CDG,
    在△DAE与△DCG中,

    ∴△DAE≌△DCG,
    ∴AE=GC,
    ∵CH=CG+GH,
    ∴CH=AE+EH.
    点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.
    23、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值为;(3)P(2,﹣),理由见解析.
    【解析】
    (1)当y=0时,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;
    (2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;
    (3)分当点M在AO上运动时,即0<t<3时,当点M在OB上运动时,即3≤t≤4时,进行讨论可求P点坐标.
    【详解】
    (1)当y=0时,﹣=0,解得x1=1,x2=﹣3,
    ∵点A在点B的左侧,
    ∴A(﹣3,0),B(1,0),
    由解析式得C(0,),
    设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk﹣,
    故直线l的表达式为y=﹣x+;
    (2)当点M在AO上运动时,如图:
    由题意可知AM=t,OM=3﹣t,MC⊥MD,过点D作x轴的垂线垂足为N,
    ∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,
    ∴∠MCO=∠DMN,
    在△MCO与△DMN中,

    ∴△MCO≌△DMN,
    ∴MN=OC=,DN=OM=3﹣t,
    ∴D(t﹣3+,t﹣3);
    同理,当点M在OB上运动时,如图,
    OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,
    ∴D(t﹣3+,t﹣3).
    综上得,D(t﹣3+,t﹣3).
    将D点坐标代入直线解析式得t=6﹣2,
    线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,
    ∵M在AB上运动,
    ∴当CM⊥AB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;
    (3)当点M在AO上运动时,如图,即0<t<3时,
    ∵tan∠CBO==,
    ∴∠CBO=60°,
    ∵△BDP是等边三角形,
    ∴∠DBP=∠BDP=60°,BD=BP,
    ∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,
    =,解得t=3﹣,
    经检验t=3﹣是此方程的解,
    过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,
    ∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);
    同理,当点M在OB上运动时,即3≤t≤4时,
    ∵△BDP是等边三角形,
    ∴∠DBP=∠BDP=60°,BD=BP,
    ∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,
    =,解得t=3﹣,
    经检验t=3﹣是此方程的解,t=3﹣(不符合题意,舍).
    故P(2,﹣).
    【点睛】
    考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.
    24、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).
    【解析】
    (1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;
    (2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;
    (3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.
    【详解】
    (1)作CH⊥y轴于H,
    则∠BCH+∠CBH=90°,
    ∵AB⊥BC,
    ∴∠ABO+∠CBH=90°,
    ∴∠ABO=∠BCH,
    在△ABO和△BCH中,

    ∴△ABO≌△BCH,
    ∴BH=OA=3,CH=OB=1,
    ∴OH=OB+BH=4,
    ∴C点坐标为(1,﹣4);
    (2)∵∠PBQ=∠ABC=90°,
    ∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,
    在△PBA和△QBC中,

    ∴△PBA≌△QBC,
    ∴PA=CQ;
    (3)∵△BPQ是等腰直角三角形,
    ∴∠BQP=45°,
    当C、P,Q三点共线时,∠BQC=135°,
    由(2)可知,△PBA≌△QBC,
    ∴∠BPA=∠BQC=135°,
    ∴∠OPB=45°,
    ∴OP=OB=1,
    ∴P点坐标为(1,0).
    【点睛】
    本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
    25、(1);(1)时,取最大值,为.
    【解析】
    (1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据,即 可得z=,利用矩形的面积公式即可得出解析式;
    (1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得.
    【详解】
    解:(1)分别延长DE,FP,与BC的延长线相交于G,H,
    ∵AF=x,
    ∴CH=x-4,
    设AQ=z,PH=BQ=6-z,
    ∵PH∥EG,
    ∴,即,
    化简得z=,
    ∴y=•x=-x1+x (4≤x≤10);
    (1)y=-x1+x=-(x-)1+,
    当x=dm时,y取最大值,最大值是dm1.
    【点睛】
    本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质.
    26、(1)1365.45、414.4(2)93.79(3)30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%(4)
    【解析】
    (1)由图1可得答案;
    (2)根据中位数的定义求解可得;
    (3)由近3年平均涨幅在30%左右即可做出估计;
    (4)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.
    【详解】
    (1)2018年首次突破了“千万”大关,达到1365.45万人次,比2017年春节假日增加1365.45﹣951.05=414.4万人次.
    故答案为:1365.45、414.4;
    (2)这组数据的中位数是=93.79万人次,
    故答案为:93.79;
    (3)2019年春节假日山西旅游总收入比2018年同期增长的百分率约为30%,理由是:近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%,
    故答案为:30%;近3年平均涨幅在30%左右,估计2019年比2018年同比增长约30%.
    (4)画树状图如下:
    则共有12种等可能的结果数,其中送给好朋友的两枚书签中恰好有“剪纸艺术”的结果数为6,
    所以送给好朋友的两枚书签中恰好有“剪纸艺术”的概率为.
    【点睛】
    本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.
    27、(1)详见解析;(2)详见解析;(3)详见解析.
    【解析】
    (1)首先根据AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,进一步得到∠ACD=∠DBF,结合CD=BD,即可证明出△ADC≌△FDB;
    (2)由△ADC≌△FDB得到AC=BF,结合CE=AE,即可证明出结论;
    (3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,结合BE⊥AC,即可判断出△ECG的形状.
    【详解】
    解:(1)∵AB=BC,BE平分∠ABC
    ∴BE⊥AC
    ∵CD⊥AB
    ∴∠ACD=∠ABE(同角的余角相等)
    又∵CD=BD
    ∴△ADC≌△FDB
    (2)∵AB=BC,BE平分∠ABC
    ∴AE=CE
    则CE=AC
    由(1)知:△ADC≌△FDB
    ∴AC=BF
    ∴CE=BF
    (3)△ECG为等腰直角三角形,理由如下:
    由点H是BC的中点,得GH垂直平分BC,从而有CG=BG,
    则∠EGC=2∠CBG=∠ABC=45°,
    又∵BE⊥AC,
    故△ECG为等腰直角三角形.
    【点睛】
    本题主要考查全等三角形的判定与性质,等腰三角形的判定与性质,解答本题的关键是熟练掌握全等三角形的判定,此题难度不是很大.
    时间x(天)
    1≤x<50
    50≤x≤90
    售价(元/件)
    x+40
    90
    每天销量(件)
    200-2x
    日期
    2月15日
    (除夕)
    2月16日
    (初一)
    2月17日
    (初二)
    2月18日(初三)
    2月19日
    (初四)
    2月20日
    (初五)
    日接待游客数量(万人次)
    7.56
    82.83
    119.51
    84.38
    103.2
    151.55

    相关试卷

    黑龙江省齐齐哈尔市龙江县重点中学2021-2022学年中考考前最后一卷数学试卷含解析:

    这是一份黑龙江省齐齐哈尔市龙江县重点中学2021-2022学年中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,的一个有理化因式是,化简,下列事件中,属于不确定事件的是等内容,欢迎下载使用。

    2021-2022学年山西农业大附中中考数学考前最后一卷含解析:

    这是一份2021-2022学年山西农业大附中中考数学考前最后一卷含解析,共24页。试卷主要包含了如图,直线与y轴交于点,下列说法正确的是等内容,欢迎下载使用。

    2021-2022学年潜江市中考数学考前最后一卷含解析:

    这是一份2021-2022学年潜江市中考数学考前最后一卷含解析,共21页。试卷主要包含了答题时请按要求用笔,若分式有意义,则x的取值范围是,下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map