2021-2022学年河南省洛阳市涧西区洛阳市中考试题猜想数学试卷含解析
展开这是一份2021-2022学年河南省洛阳市涧西区洛阳市中考试题猜想数学试卷含解析,共20页。试卷主要包含了下列运算中,正确的是,《语文课程标准》规定,4的平方根是,一、单选题等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( )
A.﹣=10 B.﹣=10
C.﹣=10 D. +=10
2.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )
A.米 B.米
C.米 D.米
3.下列运算中,正确的是( )
A.(a3)2=a5 B.(﹣x)2÷x=﹣x
C.a3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x6
4.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为( )
A.3:4 B.9:16 C.9:1 D.3:1
5.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( )
A.26×105 B.2.6×102 C.2.6×106 D.260×104
6.4的平方根是( )
A.4 B.±4 C.±2 D.2
7.下列安全标志图中,是中心对称图形的是( )
A. B. C. D.
8.一、单选题
小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是( )
A. B. C. D.
9.一个几何体的三视图如图所示,那么这个几何体是( )
A. B. C. D.
10.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )
A. B. C.2 D.2
二、填空题(共7小题,每小题3分,满分21分)
11.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,……按此作法进行去,点Bn的纵坐标为 (n为正整数).
12.如果正比例函数的图像经过第一、三象限,那么的取值范围是 __.
13.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.
14.三人中有两人性别相同的概率是_____________.
15.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.
16.如图,AB为⊙O的直径,C、D为⊙O上的点,.若∠CAB=40°,则∠CAD=_____.
17.如图,AB为⊙0的弦,AB=6,点C是⊙0上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是______________.
三、解答题(共7小题,满分69分)
18.(10分)如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.
(1)求证:AC是⊙O的切线;
(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)
19.(5分)先化简,再求值:(-)¸,其中=
20.(8分)已知AC=DC,AC⊥DC,直线MN经过点A,作DB⊥MN,垂足为B,连接CB.
(1)直接写出∠D与∠MAC之间的数量关系;
(2)①如图1,猜想AB,BD与BC之间的数量关系,并说明理由;
②如图2,直接写出AB,BD与BC之间的数量关系;
(3)在MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的值.
21.(10分)解不等式组并写出它的所有整数解.
22.(10分)已知关于的一元二次方程 (为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.
23.(12分)如图,一次函数y=kx+b的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.
(1)求一次函数和反比例函数的表达式;
(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数的图象于点N,若NM=NP,求n的值.
24.(14分)王老师对试卷讲评课中九年级学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了 名学生;
(2)在扇形统计图中,项目“主动质疑”所在扇形的圆心角度数为 度;
(3)请将频数分布直方图补充完整;
(4)如果全市九年级学生有8000名,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.
【详解】
设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
根据题意列方程为:.
故选:.
【点睛】
此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
2、D
【解析】
先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.
故选D
3、D
【解析】
根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.
【详解】
∵(a3)2=a6,
∴选项A不符合题意;
∵(-x)2÷x=x,
∴选项B不符合题意;
∵a3(-a)2=a5,
∴选项C不符合题意;
∵(-2x2)3=-8x6,
∴选项D符合题意.
故选D.
【点睛】
此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.
4、B
【解析】
可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
【详解】
∵四边形ABCD为平行四边形,
∴DC∥AB,
∴△DFE∽△BFA,
∵DE:EC=3:1,
∴DE:DC=3:4,
∴DE:AB=3:4,
∴S△DFE:S△BFA=9:1.
故选B.
5、C
【解析】
科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
260万=2600000=.
故选C.
【点睛】
此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
6、C
【解析】
根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.
【详解】
∵(±1)1=4,
∴4的平方根是±1.
故选D.
【点睛】
本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
7、B
【解析】
试题分析:A.不是中心对称图形,故此选项不合题意;
B.是中心对称图形,故此选项符合题意;
C.不是中心对称图形,故此选项不符合题意;
D.不是中心对称图形,故此选项不合题意;
故选B.
考点:中心对称图形.
8、C
【解析】
解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,
可列方程得,
故选C.
【点睛】
本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.
9、C
【解析】
由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.
10、D
【解析】
【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.
【详解】过A作AD⊥BC于D,
∵△ABC是等边三角形,
∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,
∵AD⊥BC,
∴BD=CD=1,AD=BD=,
∴△ABC的面积为BC•AD==,
S扇形BAC==,
∴莱洛三角形的面积S=3×﹣2×=2π﹣2,
故选D.
【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、.
【解析】
寻找规律: 由直线y=x的性质可知,∵B2,B3,…,Bn是直线y=x上的点,
∴△OA1B1,△OA2B2,…△OAnBn都是等腰直角三角形,且
A2B2=OA2=OB1=OA1;
A3B3=OA3=OB2=OA2=OA1;
A4B4=OA4=OB3=OA3=OA1;
……
.
又∵点A1坐标为(1,0),∴OA1=1.∴,即点Bn的纵坐标为.
12、k>1
【解析】
根据正比例函数y=(k-1)x的图象经过第一、三象限得出k的取值范围即可.
【详解】
因为正比例函数y=(k-1)x的图象经过第一、三象限,
所以k-1>0,
解得:k>1,
故答案为:k>1.
【点睛】
此题考查一次函数问题,关键是根据正比例函数y=(k-1)x的图象经过第一、三象限解答.
13、a<﹣1
【解析】
不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,
∴a+1<0,
解得:a<−1,
故答案为a<−1.
点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.
14、1
【解析】分析:
由题意和生活实际可知:“三个人中,至少有两个人的性别是相同的”即可得到所求概率为1.
详解:
∵三人的性别存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性别是“2男1女”;(4)三人的性别是“2女1男”,
∴三人中至少有两个人的性别是相同的,
∴P(三人中有二人性别相同)=1.
点睛:列出本题中所有的等可能结果是解题的关键.
15、﹣1<x<2
【解析】
根据图象得出取值范围即可.
【详解】
解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,
所以当y1>y2时,﹣1<x<2,
故答案为﹣1<x<2
【点睛】
此题考查二次函数与不等式,关键是根据图象得出取值范围.
16、25°
【解析】
连接BC,BD, 根据直径所对的圆周角是直角,得∠ACB=90°,根据同弧或等弧所对的圆周角相等,得∠ABD=∠CBD,从而可得到∠BAD的度数.
【详解】
如图,连接BC,BD,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠CAB=40°,
∴∠ABC=50°,
∵,
∴∠ABD=∠CBD=∠ABC=25°,
∴∠CAD=∠CBD=25°.
故答案为25°.
【点睛】
本题考查了圆周角定理及直径所对的圆周角是直角的知识点,解题的关键是正确作出辅助线.
17、3
【解析】
根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.
【详解】
解:因为点M、N分别是AB、BC的中点,
由三角形的中位线可知:MN=AC,
所以当AC最大为直径时,MN最大.这时∠B=90°
又因为∠ACB=45°,AB=6 解得AC=6
MN长的最大值是3.
故答案为:3.
【点睛】
本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2);
【解析】
(1)连接OD,先根据切线的性质得到∠CDO=90°,再根据平行线的性质得到∠AOC=∠OBD,∠COD=∠ODB,又因为OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根据全等三角形的判定与性质得到∠CAO=∠CDO=90°,根据切线的判定即可得证;
(2)因为AB=OC=4,OB=OD,Rt△ODC与Rt△OAC是含30°的直角三角形,从而得到
∠DOB=60°,即△BOD为等边三角形,再用扇形的面积减去△BOD的面积即可.
【详解】
(1)证明:连接OD,
∵CD与圆O相切,
∴OD⊥CD,
∴∠CDO=90°,
∵BD∥OC,
∴∠AOC=∠OBD,∠COD=∠ODB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠AOC=∠COD,
在△AOC和△DOC中,
,
∴△AOC≌△EOC(SAS),
∴∠CAO=∠CDO=90°,则AC与圆O相切;
(2)∵AB=OC=4,OB=OD,
∴Rt△ODC与Rt△OAC是含30°的直角三角形,
∴∠DOC=∠COA=60°,
∴∠DOB=60°,
∴△BOD为等边三角形,
图中阴影部分的面积=扇形DOB的面积﹣△DOB的面积,
=.
【点睛】
本题主要考查切线的判定与性质,全等三角形的判定与性质,含30°角的直角三角形的性质,扇形的面积公式等,难度中等,属于综合题,解此题的关键在于熟练掌握其知识点.
19、
【解析】
分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案.
详解:原式=
将
原式=
点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.
20、(1)相等或互补;(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC= 或.
【解析】
(1)分为点C,D在直线MN同侧和点C,D在直线MN两侧,两种情况讨论即可解题,
(2)①作辅助线,证明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解题, ②在射线AM上截取AF=BD,连接CF,证明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解题,
(3)分为当点C,D在直线MN同侧,当点C,D在直线MN两侧,两种情况解题即可,见详解.
【详解】
解:(1)相等或互补;
理由:当点C,D在直线MN同侧时,如图1,
∵AC⊥CD,BD⊥MN,
∴∠ACD=∠BDC=90°,
在四边形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,
∵∠BAC+∠CAM=180°,
∴∠CAM=∠D;
当点C,D在直线MN两侧时,如图2,
∵∠ACD=∠ABD=90°,∠AEC=∠BED,
∴∠CAB=∠D,
∵∠CAB+∠CAM=180°,
∴∠CAM+∠D=180°,
即:∠D与∠MAC之间的数量是相等或互补;
(2)①猜想:BD+AB=BC
如图3,在射线AM上截取AF=BD,连接CF.
又∵∠D=∠FAC,CD=AC
∴△BCD≌△FCA,
∴BC=FC,∠BCD=∠FCA
∵AC⊥CD
∴∠ACD=90°
即∠ACB+∠BCD=90°
∴∠ACB+∠FCA=90°
即∠FCB=90°
∴BF=
∵AF+AB=BF=
∴BD+AB=;
②如图2,在射线AM上截取AF=BD,连接CF,
又∵∠D=∠FAC,CD=AC
∴△BCD≌△FCA,
∴BC=FC,∠BCD=∠FCA
∵AC⊥CD
∴∠ACD=90°
即∠ACB+∠BCD=90°
∴∠ACB+∠FCA=90°
即∠FCB=90°
∴BF=
∵AB﹣AF=BF=
∴AB﹣BD=;
(3)①当点C,D在直线MN同侧时,如图3﹣1,
由(2)①知,△ACF≌△DCB,
∴CF=BC,∠ACF=∠ACD=90°,
∴∠ABC=45°,
∵∠ABD=90°,
∴∠CBD=45°,
过点D作DG⊥BC于G,
在Rt△BDG中,∠CBD=45°,BD=,
∴DG=BG=1,
在Rt△CGD中,∠BCD=30°,
∴CG=DG=,
∴BC=CG+BG=+1,
②当点C,D在直线MN两侧时,如图2﹣1,
过点D作DG⊥CB交CB的延长线于G,
同①的方法得,BG=1,CG=,
∴BC=CG﹣BG=﹣1
即:BC= 或,
【点睛】
本题考查了三角形中的边长关系,等腰直角三角形的性质,中等难度,分类讨论与作辅助线是解题关键.
21、不等式组的整数解有﹣1、0、1.
【解析】
先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.
【详解】
,
解不等式①可得,x>-2;
解不等式②可得,x≤1;
∴不等式组的解集为:﹣2<x≤1,
∴不等式组的整数解有﹣1、0、1.
【点睛】
本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.
22、 (1)证明见解析;(2)或.
【解析】
(1)求出△的值,再判断出其符号即可;
(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可.
【详解】
(1)依题意,得
,
,
.
∵,
∴方程总有两个实数根.
(2)∵,
∴,.
∵方程的两个实数根都是整数,且是正整数,
∴或.
∴或.
【点睛】
本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.
23、20(1)y=2x-5, y=;(2)n=-4或n=1
【解析】
(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;
(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案.
【详解】
解:(1)∵点A的坐标为(4,3),
∴OA=5,
∵OA=OB,
∴OB=5,
∵点B在y轴的负半轴上,
∴点B的坐标为(0,-5),
将点A(4,3)代入反比例函数解析式y=中,
∴反比例函数解析式为y=,
将点A(4,3)、B(0,-5)代入y=kx+b中,得:
k=2、b=-5,
∴一次函数解析式为y=2x-5;
(2)由(1)知k=2,
则点N的坐标为(2,6),
∵NP=NM,
∴点M坐标为(2,0)或(2,12),
分别代入y=2x-n可得:
n=-4或n=1.
【点睛】
本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用.
24、(1)560; (2)54;(3)详见解析;(4)独立思考的学生约有840人.
【解析】
(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;
(2)由“主动质疑”占的百分比乘以360°即可得到结果;
(3)求出“讲解题目”的学生数,补全统计图即可;
(4)求出“独立思考”学生占的百分比,乘以2800即可得到结果.
【详解】
(1)根据题意得:224÷40%=560(名),
则在这次评价中,一个调查了560名学生;
故答案为:560;
(2)根据题意得:×360°=54°,
则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;
故答案为:54;
(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:
(4)根据题意得:2800×(人),
则“独立思考”的学生约有840人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
相关试卷
这是一份2023-2024学年河南省洛阳市涧西区洛阳市数学九上期末联考模拟试题含答案,共8页。试卷主要包含了下列说法正确的是,二次函数图象如图所示,下列结论,如图,是用棋子摆成的“上”字等内容,欢迎下载使用。
这是一份2022-2023学年河南省洛阳市涧西区七年级(下)期中数学试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年河南省洛阳市涧西区八年级(下)期中数学试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。