年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年河南省郑州枫杨外国语校中考数学最后冲刺模拟试卷含解析

    2021-2022学年河南省郑州枫杨外国语校中考数学最后冲刺模拟试卷含解析第1页
    2021-2022学年河南省郑州枫杨外国语校中考数学最后冲刺模拟试卷含解析第2页
    2021-2022学年河南省郑州枫杨外国语校中考数学最后冲刺模拟试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年河南省郑州枫杨外国语校中考数学最后冲刺模拟试卷含解析

    展开

    这是一份2021-2022学年河南省郑州枫杨外国语校中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了下列各式计算正确的是,将一副三角尺,tan30°的值为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是(  )
    A. B. C. D.
    2.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为(  )元.(精确到百亿位)
    A.2×1011 B.2×1012 C.2.0×1011 D.2.0×1010
    3.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
    A. B. C. D.
    4.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为

    A. B.3 C.1 D.
    5.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则(  )

    A.三个视图的面积一样大 B.主视图的面积最小
    C.左视图的面积最小 D.俯视图的面积最小
    6.下列各式计算正确的是(  )
    A.a4•a3=a12 B.3a•4a=12a C.(a3)4=a12 D.a12÷a3=a4
    7.将一副三角尺(在中,,,在中,,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为( )

    A. B. C. D.
    8.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为(  )
    A.﹣2 B.﹣1 C.1 D.2
    9.tan30°的值为(  )
    A. B. C. D.
    10.在同一平面直角坐标系中,函数y=x+k与(k为常数,k≠0)的图象大致是(  )
    A. B.
    C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知直角三角形的两边长分别为3、1.则第三边长为________.
    12.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________

    13.计算:的结果是_____.
    14.如果,那么代数式的值是______.
    15.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.
    16.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 ________元。
    17.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.

    三、解答题(共7小题,满分69分)
    18.(10分)(问题情境)
    张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC中,AB=AC,点P为边BC上任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.

    小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
    小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
    [变式探究]
    如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
    请运用上述解答中所积累的经验和方法完成下列两题:
    [结论运用]
    如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
    [迁移拓展]
    图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
    19.(5分)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.

    (1)a 0, 0(填“>”或“<”);
    (2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
    (3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
    20.(8分)一道选择题有四个选项.
    (1)若正确答案是,从中任意选出一项,求选中的恰好是正确答案的概率;
    (2)若正确答案是,从中任意选择两项,求选中的恰好是正确答案的概率.
    21.(10分)根据图中给出的信息,解答下列问题:
    放入一个小球水面升高 ,,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?
    22.(10分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1), C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1 ,使点P(m,n)移到P(m+6,n+1)处.
    (1)画出△A1B1C1
    (2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;
    (3)在(2)的条件下求BC扫过的面积.

    23.(12分)如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,
    (1)求k的值;
    (2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
    (3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

    24.(14分)某车间的甲、乙两名工人分别同时生产只同一型号的零件,他们生产的零件(只)与生产时间(分)的函数关系的图象如图所示.根据图象提供的信息解答下列问题:

    (1)甲每分钟生产零件_______只;乙在提高生产速度之前已生产了零件_______只;
    (2)若乙提高速度后,乙的生产速度是甲的倍,请分别求出甲、乙两人生产全过程中,生产的零件(只)与生产时间(分)的函数关系式;
    (3)当两人生产零件的只数相等时,求生产的时间;并求出此时甲工人还有多少只零件没有生产.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,
    可列方程得,
    故选C.
    【点睛】
    本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.
    2、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    2000亿元=2.0×1.
    故选:C.
    【点睛】
    考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3、D
    【解析】
    试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.
    试题解析:画树状图如下:

    共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.
    故选D.
    考点:列表法与树状法.
    4、A
    【解析】
    首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可
    【详解】
    ∵AB=3,AD=4,∴DC=3
    ∴根据勾股定理得AC=5
    根据折叠可得:△DEC≌△D′EC,
    ∴D′C=DC=3,DE=D′E
    设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
    在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,
    解得:x=
    故选A.
    5、C
    【解析】
    试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.
    故选C
    考点:三视图
    6、C
    【解析】
    根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.
    【详解】
    A.a4•a3=a7,故A错误;
    B.3a•4a=12a2,故B错误;
    C.(a3)4=a12,故C正确;
    D.a12÷a3=a9,故D错误.
    故选C.
    【点睛】
    本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.
    7、C
    【解析】
    先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=,于是可得=.
    【详解】
    ∵点D为斜边AB的中点,
    ∴CD=AD=DB,
    ∴∠ACD=∠A=30°,∠BCD=∠B=60°,
    ∵∠EDF=90°,
    ∴∠CPD=60°,
    ∴∠MPD=∠NCD,
    ∵△EDF绕点D顺时针方向旋转α(0°<α<60°),
    ∴∠PDM=∠CDN=α,
    ∴△PDM∽△CDN,
    ∴=,
    在Rt△PCD中,∵tan∠PCD=tan30°=,
    ∴=tan30°=.
    故选:C.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.
    8、C
    【解析】
    先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
    【详解】
    a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
    故选C.
    【点睛】
    本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.
    9、D
    【解析】
    直接利用特殊角的三角函数值求解即可.
    【详解】
    tan30°=,故选:D.
    【点睛】
    本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.
    10、B
    【解析】
    选项A中,由一次函数y=x+k的图象知k0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.
    故选B.

    二、填空题(共7小题,每小题3分,满分21分)
    11、4或
    【解析】
    试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:
    ①长为3的边是直角边,长为3的边是斜边时:第三边的长为:;
    ②长为3、3的边都是直角边时:第三边的长为:;
    ∴第三边的长为:或4.
    考点:3.勾股定理;4.分类思想的应用.
    12、
    【解析】
    作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,即可得出答案.
    【详解】
    如图,分别连接OA、OB、OD;

    ∵OA=OB= ,AB=2,
    ∴△OAB是等腰直角三角形,
    ∴∠OAB=45°;
    同理可证:∠OAD=45°,
    ∴∠DAB=90°;
    ∵∠CAB=60°,
    ∴∠DAC=90°−60°=30°,
    ∴旋转角的正切值是,
    故答案为:.
    【点睛】
    此题考查等边三角形的性质,旋转的性质,点与圆的位置关系,解直角三角形,解题关键在于作辅助线.
    13、
    【解析】
    试题分析:先进行二次根式的化简,然后合并同类二次根式即可,

    考点:二次根式的加减
    14、1
    【解析】
    分析:对所求代数式根据分式的混合运算顺序进行化简,再把变形后整体代入即可.
    详解:




    故答案为1.
    点睛:考查分式的混合运算,掌握运算顺序是解题的关键.注意整体代入法的运用.
    15、1
    【解析】
    把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.
    【详解】
    ∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.
    故答案为:1.
    【点睛】
    本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2﹣m=1,难度适中.
    16、500
    【解析】
    设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.
    【详解】
    解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.
    故答案为:500.
    【点睛】
    本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.
    17、
    【解析】
    先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.
    【详解】
    解:根据题意得2π×PA=3×2π×1,
    所以PA=3,
    所以圆锥的高OP=
    故答案为.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

    三、解答题(共7小题,满分69分)
    18、小军的证明:见解析;小俊的证明:见解析;[变式探究]见解析;[结论运用]PG+PH的值为1;[迁移拓展](6+2)dm
    【解析】
    小军的证明:连接AP,利用面积法即可证得;
    小俊的证明:过点P作PG⊥CF,先证明四边形PDFG为矩形,再证明△PGC≌△CEP,即可得到答案;
    [变式探究]小军的证明思路:连接AP,根据S△ABC=S△ABP﹣S△ACP,即可得到答案;
    小俊的证明思路:过点C,作CG⊥DP,先证明四边形CFDG是矩形,再证明△CGP≌△CEP即可得到答案;
    [结论运用] 过点E作EQ⊥BC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BE=BF即可得到答案;
    [迁移拓展]延长AD,BC交于点F,作BH⊥AF,证明△ADE∽△BCE得到FA=FB,设DH=x,利用勾股定理求出x得到BH=6,再根据∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点即可得到答案.
    【详解】
    小军的证明:
    连接AP,如图②

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP+S△ACP,
    ∴AB×CF=AB×PD+AC×PE,
    ∵AB=AC,
    ∴CF=PD+PE.
    小俊的证明:
    过点P作PG⊥CF,如图2,
    ∵PD⊥AB,CF⊥AB,PG⊥FC,
    ∴∠CFD=∠FDG=∠FGP=90°,
    ∴四边形PDFG为矩形,
    ∴DP=FG,∠DPG=90°,
    ∴∠CGP=90°,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠PGC=∠CEP,
    ∵∠BDP=∠DPG=90°,
    ∴PG∥AB,
    ∴∠GPC=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∴∠GPC=∠ECP,
    在△PGC和△CEP中

    ∴△PGC≌△CEP,
    ∴CG=PE,
    ∴CF=CG+FG=PE+PD;
    [变式探究]
    小军的证明思路:连接AP,如图③,

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP﹣S△ACP,
    ∴AB×CF=AB×PD﹣AC×PE,
    ∵AB=AC,
    ∴CF=PD﹣PE;
    小俊的证明思路:
    过点C,作CG⊥DP,如图③,
    ∵PD⊥AB,CF⊥AB,CG⊥DP,
    ∴∠CFD=∠FDG=∠DGC=90°,
    ∴CF=GD,∠DGC=90°,四边形CFDG是矩形,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠CGP=∠CEP,
    ∵CG⊥DP,AB⊥DP,
    ∴∠CGP=∠BDP=90°,
    ∴CG∥AB,
    ∴∠GCP=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∵∠ACB=∠PCE,
    ∴∠GCP=∠ECP,
    在△CGP和△CEP中,

    ∴△CGP≌△CEP,
    ∴PG=PE,
    ∴CF=DG=DP﹣PG=DP﹣PE.
    [结论运用]
    如图④

    过点E作EQ⊥BC,
    ∵四边形ABCD是矩形,
    ∴AD=BC,∠C=∠ADC=90°,
    ∵AD=8,CF=3,
    ∴BF=BC﹣CF=AD﹣CF=5,
    由折叠得DF=BF,∠BEF=∠DEF,
    ∴DF=5,
    ∵∠C=90°,
    ∴DC==1,
    ∵EQ⊥BC,∠C=∠ADC=90°,
    ∴∠EQC=90°=∠C=∠ADC,
    ∴四边形EQCD是矩形,
    ∴EQ=DC=1,
    ∵AD∥BC,
    ∴∠DEF=∠EFB,
    ∵∠BEF=∠DEF,
    ∴∠BEF=∠EFB,
    ∴BE=BF,
    由问题情景中的结论可得:PG+PH=EQ,
    ∴PG+PH=1.
    ∴PG+PH的值为1.
    [迁移拓展]
    延长AD,BC交于点F,作BH⊥AF,如图⑤,

    ∵AD×CE=DE×BC,
    ∴,
    ∵ED⊥AD,EC⊥CB,
    ∴∠ADE=∠BCE=90°,
    ∴△ADE∽△BCE,
    ∴∠A=∠CBE,
    ∴FA=FB,
    由问题情景中的结论可得:ED+EC=BH,
    设DH=x,
    ∴AH=AD+DH=3+x,
    ∵BH⊥AF,
    ∴∠BHA=90°,
    ∴BH2=BD2﹣DH2=AB2﹣AH2,
    ∵AB=2,AD=3,BD=,
    ∴()2﹣x2=(2)2﹣(3+x)2,
    ∴x=1,
    ∴BH2=BD2﹣DH2=37﹣1=36,
    ∴BH=6,
    ∴ED+EC=6,
    ∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,
    ∴DM=EM=AE,CN=EN=BE,
    ∴△DEM与△CEN的周长之和
    =DE+DM+EM+CN+EN+EC
    =DE+AE+BE+EC
    =DE+AB+EC
    =DE+EC+AB
    =6+2,
    ∴△DEM与△CEN的周长之和(6+2)dm.
    【点睛】
    此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.
    19、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).
    【解析】
    (1)由抛物线开口向上,且与x轴有两个交点,即可做出判断;
    (2)根据抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;
    (3)存在,分两种情况讨论:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;
    (ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,分别求出E坐标即可.
    【详解】
    (1)a>0,>0;
    (2)∵直线x=2是对称轴,A(﹣2,0),
    ∴B(6,0),
    ∵点C(0,﹣4),
    将A,B,C的坐标分别代入,解得:,,,
    ∴抛物线的函数表达式为;
    (3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,

    则四边形ACEF即为满足条件的平行四边形,
    ∵抛物线关于直线x=2对称,
    ∴由抛物线的对称性可知,E点的横坐标为4,
    又∵OC=4,∴E的纵坐标为﹣4,
    ∴存在点E(4,﹣4);
    (ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,
    过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,
    ∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,
    ∵AC∥E′F′,
    ∴∠CAO=∠E′F′G,
    又∵∠COA=∠E′GF′=90°,AC=E′F′,
    ∴△CAO≌△E′F′G,
    ∴E′G=CO=4,
    ∴点E′的纵坐标是4,
    ∴,解得:,,
    ∴点E′的坐标为(,4),同理可得点E″的坐标为(,4).

    20、(1);(2)
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图展示所有12种等可能的结果数,再找出选中的恰好是正确答案A,B的结果数,然后根据概率公式求解.
    【详解】
    解:(1)选中的恰好是正确答案A的概率为;
    (2)画树状图:

    共有12种等可能的结果数,其中选中的恰好是正确答案A,B的结果数为2,
    所以选中的恰好是正确答案A,B的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    21、详见解析
    【解析】
    (1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可.
    (1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.
    【详解】
    解:(1)设一个小球使水面升高x厘米,由图意,得2x=21﹣16,解得x=1.
    设一个大球使水面升高y厘米,由图意,得1y=21﹣16,解得:y=2.
    所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm.
    (1)设应放入大球m个,小球n个,由题意,得
    ,解得:.
    答:如果要使水面上升到50cm,应放入大球4个,小球6个.
    22、(1)见解析;(2)见解析;(3).
    【解析】
    (1)根据P(m,n)移到P(m+6,n+1)可知△ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;
    (2)根据图形旋转的性质画出旋转后的图形即可;
    (3)先求出BC长,再利用扇形面积公式,列式计算即可得解.
    【详解】
    解:(1)平移△ABC得到△A1B1C1,点P(m,n)移到P(m+6,n+1)处,
    ∴△ABC向右平移6个单位,向上平移了一个单位,
    ∴A1(4,4),B1(2,0),C1(8,1);
    顺次连接A1,B1,C1三点得到所求的△A1B1C1

    (2)如图所示:△A2B2C即为所求三角形.

    (3)BC的长为:
    BC扫过的面积
    【点睛】
    本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
    23、(1)32;(2)x<﹣4或0<x<4;(3)点P的坐标是P(﹣7+,14+2);或P(7+,﹣14+2).
    【解析】
    分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;
    (2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值.
    (3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即1.可根据双曲线的解析式设出P点的坐标,然后表示出△POA的面积,由于△POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标.
    详解:(1)∵点A在正比例函数y=2x上,
    ∴把x=4代入正比例函数y=2x,
    解得y=8,∴点A(4,8),
    把点A(4,8)代入反比例函数y=,得k=32,
    (2)∵点A与B关于原点对称,
    ∴B点坐标为(﹣4,﹣8),
    由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x<﹣8或0<x<8;
    (3)∵反比例函数图象是关于原点O的中心对称图形,
    ∴OP=OQ,OA=OB,
    ∴四边形APBQ是平行四边形,
    ∴S△POA=S平行四边形APBQ×=×224=1,
    设点P的横坐标为m(m>0且m≠4),
    得P(m,),
    过点P、A分别做x轴的垂线,垂足为E、F,
    ∵点P、A在双曲线上,
    ∴S△POE=S△AOF=16,
    若0<m<4,如图,
    ∵S△POE+S梯形PEFA=S△POA+S△AOF,
    ∴S梯形PEFA=S△POA=1.
    ∴(8+)•(4﹣m)=1.
    ∴m1=﹣7+3,m2=﹣7﹣3(舍去),
    ∴P(﹣7+3,16+);
    若m>4,如图,
    ∵S△AOF+S梯形AFEP=S△AOP+S△POE,
    ∴S梯形PEFA=S△POA=1.
    ∴×(8+)•(m﹣4)=1,
    解得m1=7+3,m2=7﹣3(舍去),
    ∴P(7+3,﹣16+).
    ∴点P的坐标是P(﹣7+3,16+);或P(7+3,﹣16+).

    点睛:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.利用数形结合的思想,求得三角形的面积.
    24、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150
    【解析】
    解:(1)甲每分钟生产=25只;
    提高生产速度之前乙的生产速度==15只/分,
    故乙在提高生产速度之前已生产了零件:15×10=150只;
    (2)结合后图象可得:
    甲:y甲=25x(0≤x≤20);
    乙提速后的速度为50只/分,故乙生产完500只零件还需7分钟,
    乙:y乙=15x(0≤x≤10),
    当10<x≤17时,设y乙=kx+b,把(10,150)、(17,500),代入可得:
    10k+b=150,17k+b=500,
    解得:k=50,b=−350,
    故y乙=50x−350(10≤x≤17).
    综上可得:y甲=25x(0≤x≤20);

    (3)令y甲=y乙,得25x=50x−350,
    解得:x=14,
    此时y甲=y乙=350只,故甲工人还有150只未生产.

    相关试卷

    河南省郑州枫杨外国语中学2021-2022学年中考联考数学试卷含解析:

    这是一份河南省郑州枫杨外国语中学2021-2022学年中考联考数学试卷含解析,共24页。试卷主要包含了单项式2a3b的次数是等内容,欢迎下载使用。

    2021-2022学年河南省郑州市郑州枫杨外国语校中考联考数学试卷含解析:

    这是一份2021-2022学年河南省郑州市郑州枫杨外国语校中考联考数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,-3的相反数是,函数y=中自变量x的取值范围是,学校小组名同学的身高等内容,欢迎下载使用。

    2021-2022学年河南省郑州枫杨外国语校中考数学四模试卷含解析:

    这是一份2021-2022学年河南省郑州枫杨外国语校中考数学四模试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map