2021-2022学年河南省安阳市滑县重点达标名校中考试题猜想数学试卷含解析
展开1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( )
A.-4℃B.4℃C.8℃D.-8℃
2.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )
A.B.C.D.
3.下列运算正确的是( )
A.(a2)5=a7 B.(x﹣1)2=x2﹣1
C.3a2b﹣3ab2=3 D.a2•a4=a6
4.若x是2的相反数,|y|=3,则的值是( )
A.﹣2B.4C.2或﹣4D.﹣2或4
5.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是( )
A. cmB.2 cmC.2cmD. cm
6.sin60°的值为( )
A.B.C.D.
7.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )
A.平均数和中位数不变B.平均数增加,中位数不变
C.平均数不变,中位数增加D.平均数和中位数都增大
8.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )
A.B.C.D.
9.若分式的值为0,则x的值为( )
A.-2B.0C.2D.±2
10.关于x的不等式组的所有整数解是( )
A.0,1B.﹣1,0,1C.0,1,2D.﹣2,0,1,2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为 .
12.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为_____.
13.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:
①两人相遇前,甲的速度小于乙的速度;
②出发后1小时,两人行程均为10km;
③出发后1.5小时,甲的行程比乙多3km;
④甲比乙先到达终点.
其中正确的有_____个.
14.将一张矩形纸片折叠成如图所示的图形,若AB=6cm,则AC= cm.
15.一个正多边形的一个外角为30°,则它的内角和为_____.
16.如图,在△ABC中,AB=AC=2,BC=1.点E为BC边上一动点,连接AE,作∠AEF=∠B,EF与△ABC的外角∠ACD的平分线交于点F.当EF⊥AC时,EF的长为_______.
三、解答题(共8题,共72分)
17.(8分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:本次一共调查了多少名购买者?请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
18.(8分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).求n和b的值;求△OAB的面积;直接写出一次函数值大于反比例函数值的自变量x的取值范围.
19.(8分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(1)条件下,四边形AODC的面积为多少?
20.(8分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.
21.(8分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.
(1)求抛物线y=ax2+bx+2的函数表达式;
(2)求直线BC的函数表达式;
(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,
①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;
②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.
22.(10分)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.
(1)求证:PC是⊙O的切线;
(2)若∠ABC=60°,AB=10,求线段CF的长.
23.(12分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
24.如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.
(1)若点A的坐标为(1,0).
①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;
②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;
(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据题意列出算式,计算即可求出值.
【详解】
解:根据题意得:6-(-2)=6+2=8,
则室内温度比室外温度高8℃,
故选:C.
【点睛】
本题考查了有理数的减法,熟练掌握运算法则是解题的关键.
2、D
【解析】
根据题意列出关系式,去括号合并即可得到结果.
【详解】
解:设小长方形卡片的长为x,宽为y,
根据题意得:x+2y=a,
则图②中两块阴影部分周长和是:
2a+2(b-2y)+2(b-x)
=2a+4b-4y-2x
=2a+4b-2(x+2y)
=2a+4b-2a
=4b.
故选择:D.
【点睛】
此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
3、D
【解析】
根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.
【详解】
A、(a2)5=a10,故原题计算错误;
B、(x﹣1)2=x2﹣2x+1,故原题计算错误;
C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;
D、a2•a4=a6,故原题计算正确;
故选:D.
【点睛】
此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.
4、D
【解析】
直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.
【详解】
解:∵x是1的相反数,|y|=3,
∴x=-1,y=±3,
∴y-x=4或-1.
故选D.
【点睛】
此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.
5、B
【解析】
由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.
【详解】
解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.
故选择B.
【点睛】
本题考查了圆锥的概念和弧长的计算.
6、B
【解析】
解:sin60°=.故选B.
7、B
【解析】
本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.
【详解】
解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然
;
由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
故选B.
【点睛】
本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.
8、B
【解析】
解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B.
9、C
【解析】
由题意可知:,
解得:x=2,
故选C.
10、B
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案.
【详解】
解不等式﹣2x<4,得:x>﹣2,
解不等式3x﹣5<1,得:x<2,
则不等式组的解集为﹣2<x<2,
所以不等式组的整数解为﹣1、0、1,
故选:B.
【点睛】
考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
试题分析:设正方形的边长为y,EC=x,
由题意知,AE2=AB2+BE2,
即(x+y)2=y2+(y-x)2,
由于y≠0,
化简得y=4x,
∴sin∠EAB=.
考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义
12、5
【解析】
由题意得, ,.
∴原式
13、1
【解析】
试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;
由图可得,两人在1小时时相遇,行程均为10km,故②正确;
甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;
甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.
14、1.
【解析】
试题分析:如图,∵矩形的对边平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,
∴AC=1cm.
考点:1轴对称;2矩形的性质;3等腰三角形.
15、1800°
【解析】
试题分析:这个正多边形的边数为=12,
所以这个正多边形的内角和为(12﹣2)×180°=1800°.
故答案为1800°.
考点:多边形内角与外角.
16、1+
【解析】
当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依据Rt△CFG≌Rt△CFH,可得CH=CG=,再根据勾股定理即可得到EF的长.
【详解】
解:如图,
当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,
当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,
∴AE⊥BC,
∴CE=BC=2,
又∵AC=2,
∴AE=1,EG==,
∴CG==,
作FH⊥CD于H,
∵CF平分∠ACD,
∴FG=FH,而CF=CF,
∴Rt△CFG≌Rt△CFH,
∴CH=CG=,
设EF=x,则HF=GF=x-,
∵Rt△EFH中,EH2+FH2=EF2,
∴(2+)2+(x-)2=x2,
解得x=1+,
故答案为1+.
【点睛】
本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
三、解答题(共8题,共72分)
17、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.
【解析】
分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;
(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;
(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.
详解:(1)56÷28%=200,
即本次一共调查了200名购买者;
(2)D方式支付的有:200×20%=40(人),
A方式支付的有:200-56-44-40=60(人),
补全的条形统计图如图所示,
在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,
(3)1600×=928(名),
答:使用A和B两种支付方式的购买者共有928名.
点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
18、(1)-1;(2);(3)x>1或﹣4<x<0.
【解析】
(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线y=x+3与y轴的交点为C,由S△AOB=S△AOC+S△BOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.
【详解】
(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,
得k=1×4,1+b=4,
解得k=4,b=3,
∵点B(﹣4,n)也在反比例函数y=的图象上,
∴n==﹣1;
(2)如图,设直线y=x+3与y轴的交点为C,
∵当x=0时,y=3,
∴C(0,3),
∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,
(3)∵B(﹣4,﹣1),A(1,4),
∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.
【点睛】
本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义,这里体现了数形结合的思想.
19、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1.
【解析】
试题分析:
(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;
(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;
(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.
试题解析:
(1)∵A(0,2),BC∥x轴,
∴B(﹣1,2),C(3,2),
∴AB=1,CA=3,
∴线段AB与线段CA的长度之比为;
(2)∵B是函数y=﹣(x<0)的一点,C是函数y=(x>0)的一点,
∴B(﹣,a),C(,a),
∴AB=,CA=,
∴线段AB与线段CA的长度之比为;
(3)∵=,
∴=,
又∵OA=a,CD∥y轴,
∴,
∴CD=4a,
∴四边形AODC的面积为=(a+4a)×=1.
20、足球单价是60元,篮球单价是90元.
【解析】
设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可.
【详解】
解:足球的单价分别为x元,篮球单价是1.5x元,
可得:,
解得:x=60,
经检验x=60是原方程的解,且符合题意,
1.5x=1.5×60=90,
答:足球单价是60元,篮球单价是90元.
【点睛】
本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验.
21、(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
【解析】
(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;
(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;
(3)①AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;
②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.
【详解】
(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,
解得:a=﹣,b=,
故函数的表达式为y=﹣x2+x+2;
(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,
解得:k=2,b=2,
故:直线BC的函数表达式为y=2x+2,
(3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),
则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,
∴AE∥BC,而EP⊥BC,∴BP⊥AE
而BP=AE,∴线段BP与线段AE的关系是相互垂直;
②设点P的横坐标为m,
当P点在线段BC上时,
P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,
直线MM′⊥BC,∴kMM′=﹣,
直线MM′的方程为:y=﹣x+(2+m),
则M′坐标为(0,2+m)或(4+m,0),
由题意得:PM′=PM=2m,
PM′2=42+m2=(2m)2,此式不成立,
或PM′2=m2+(2m+2)2=(2m)2,
解得:m=﹣4±2,
故点P的坐标为(﹣4±2,﹣8±4);
当P点在线段BE上时,
点P坐标为(m,﹣4),点M坐标为(m,2),
则PM=6,
直线MM′的方程不变,为y=﹣x+(2+m),
则M′坐标为(0,2+m)或(4+m,0),
PM′2=m2+(6+m)2=(2m)2,
解得:m=0,或﹣;
或PM′2=42+42=(6)2,无解;
故点P的坐标为(0,﹣4)或(﹣,﹣4);
综上所述:
点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
【点睛】
主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
22、(1)证明见解析(2)1
【解析】
(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;
(2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=1可得答案.
【详解】
(1)连接OC.
∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC.
在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.
∵PA是半⊙O的切线,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切线.
(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°.
∵AB=10,∴OC=1.
由(1)知∠OCF=90°,∴CF=OC•tan∠COB=1.
【点睛】
本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.
23、 (1)抛物线的解析式为:y=﹣x1+x+1
(1)存在,P1(,2),P1(,),P3(,﹣)
(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.
【解析】
试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;
(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;
(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.
试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).
解得:,
∴抛物线的解析式为:y=﹣x1+x+1;
(1)∵y=﹣x1+x+1,
∴y=﹣(x﹣)1+,
∴抛物线的对称轴是x=.
∴OD=.
∵C(0,1),
∴OC=1.
在Rt△OCD中,由勾股定理,得
CD=.
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP1=CP3=CD.
作CH⊥x轴于H,
∴HP1=HD=1,
∴DP1=2.
∴P1(,2),P1(,),P3(,﹣);
(3)当y=0时,0=﹣x1+x+1
∴x1=﹣1,x1=2,
∴B(2,0).
设直线BC的解析式为y=kx+b,由图象,得
,
解得:,
∴直线BC的解析式为:y=﹣x+1.
如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),
∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).
∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,
=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),
=﹣a1+2a+(0≤x≤2).
=﹣(a﹣1)1+
∴a=1时,S四边形CDBF的面积最大=,
∴E(1,1).
考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值
24、(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大.
【解析】
试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值;
②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;
(2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.
试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:
(x﹣h)2﹣2=0,解得:h=3或h=﹣1,
∵点A在点B的左侧,∴h>0,∴h=3,
∴抛物线l的表达式为:y=(x﹣3)2﹣2,
∴抛物线的对称轴是:直线x=3,
由对称性得:B(5,0),
由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;
②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,
由对称性得:DF=PD,
∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,
∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,
设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),
∵点F、Q在抛物线l上,
∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,
∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],
解得:a=或a=0(舍),∴P(,);
(2)当y=0时,(x﹣h)2﹣2=0,
解得:x=h+2或h﹣2,
∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),
如图3,作抛物线的对称轴交抛物线于点C,
分两种情况:
①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,
则,∴3≤h≤4,
②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,
即:h+2≤2,h≤0,
综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.
考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.
湖北省阳新县重点达标名校2021-2022学年中考试题猜想数学试卷含解析: 这是一份湖北省阳新县重点达标名校2021-2022学年中考试题猜想数学试卷含解析,共24页。试卷主要包含了是两个连续整数,若,则分别是.等内容,欢迎下载使用。
吉林省辉南县重点达标名校2021-2022学年中考试题猜想数学试卷含解析: 这是一份吉林省辉南县重点达标名校2021-2022学年中考试题猜想数学试卷含解析,共27页。试卷主要包含了若M,下列计算正确的是等内容,欢迎下载使用。
河南省安阳市重点达标名校2021-2022学年中考适应性考试数学试题含解析: 这是一份河南省安阳市重点达标名校2021-2022学年中考适应性考试数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图的立体图形,从左面看可能是等内容,欢迎下载使用。