2021-2022学年黑龙江省大庆市龙凤区重点达标名校中考冲刺卷数学试题含解析
展开1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下面的几何体中,主视图为圆的是( )
A.B.C.D.
2.已知am=2,an=3,则a3m+2n的值是( )
A.24B.36C.72D.6
3.第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )
A.B.C.D.
4.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )
A.B.
C.D.
5.给出下列各数式,① ② ③ ④ 计算结果为负数的有( )
A.1个B.2个C.3个D.4个
6.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )
A.B.C.D.
7.下列运算结果为正数的是( )
A.1+(–2)B.1–(–2)C.1×(–2)D.1÷(–2)
8.下列各式:①3+3=6;②=1;③+==2;④=2;其中错误的有( ).
A.3个B.2个C.1个D.0个
9.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正确结论的序号是( )
A.③④B.②③C.①④D.①②③
10.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )
A.B.C.D.
二、填空题(共7小题,每小题3分,满分21分)
11.据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为____________.
12.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.
13.已知点、都在反比例函数的图象上,若,则k的值可以取______写出一个符合条件的k值即可.
14.计算的结果为 .
15.点A(1,2),B(n,2)都在抛物线y=x2﹣4x+m上,则n=_____.
16.如果,那么的结果是______.
17.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.
三、解答题(共7小题,满分69分)
18.(10分)计算:.先化简,再求值:,其中.
19.(5分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.
20.(8分)如图,AB为☉O的直径,CD与☉O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE,交☉O于点F,交切线于点C,连接AC.
(1)求证:AC是☉O的切线;
(2)连接EF,当∠D= °时,四边形FOBE是菱形.
21.(10分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.
22.(10分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角α=45°,同时测得大楼底端A点的俯角为β=30°.已知建筑物M的高CD=20米,求楼高AB为多少米?(≈1.732,结果精确到0.1米)
23.(12分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形AECF的周长.
24.(14分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
B、的主视图是正方形,故B不符合题意;
C、的主视图是圆,故C符合题意;
D、的主视图是三角形,故D不符合题意;
故选C.
考点:简单几何体的三视图.
2、C
【解析】
试题解析:∵am=2,an=3,
∴a3m+2n
=a3m•a2n
=(am)3•(an)2
=23×32
=8×9
=1.
故选C.
3、B
【解析】
先找出滑雪项目图案的张数,结合5 张形状、大小、质地均相同的卡片,再根据概率公式即可求解.
【详解】
∵有 5 张形状、大小、质地均相同的卡片,滑雪项目图案的有高山滑雪和单板滑雪2张,
∴从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是.
故选B.
【点睛】
本题考查了简单事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.
4、D
【解析】
试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,
∴PA+PC=BC.故选D.
考点:作图—复杂作图.
5、B
【解析】
∵①;②;③;④;
∴上述各式中计算结果为负数的有2个.
故选B.
6、B
【解析】
试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是.
故选B.
考点:概率.
7、B
【解析】
分别根据有理数的加、减、乘、除运算法则计算可得.
【详解】
解:A、1+(﹣2)=﹣(2﹣1)=﹣1,结果为负数;
B、1﹣(﹣2)=1+2=3,结果为正数;
C、1×(﹣2)=﹣1×2=﹣2,结果为负数;
D、1÷(﹣2)=﹣1÷2=﹣,结果为负数;
故选B.
【点睛】
本题主要考查有理数的混合运算,熟练掌握有理数的四则运算法则是解题的关键.
8、A
【解析】
3+3=6,错误,无法计算;② =1,错误;③+==2不能计算;④=2,正确.
故选A.
9、C
【解析】
试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①当x=1时,y=a+b+c=1,故本选项错误;
②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;
③由抛物线的开口向下知a<1,
∵对称轴为1>x=﹣>1,
∴2a+b<1,
故本选项正确;
④对称轴为x=﹣>1,
∴a、b异号,即b>1,
∴abc<1,
故本选项错误;
∴正确结论的序号为②③.
故选B.
点评:二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;
(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;
(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.
10、C
【解析】
【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.
【详解】
设合伙人数为x人,物价为y钱,根据题意得
故选C
【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.
二、填空题(共7小题,每小题3分,满分21分)
11、3.86×108
【解析】
根据科学记数法的表示(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数)形式可得:
3.86亿=386000000=3.86×108.
故答案是:3.86×108.
12、1
【解析】
一组数据中出现次数最多的数据叫做众数,由此可得出答案.
【详解】
∵一组数据1,3,5,x,1,5的众数和中位数都是1,
∴x=1,
故答案为1.
【点睛】
本题考查了众数的知识,解答本题的关键是掌握众数的定义.
13、-1
【解析】
利用反比例函数的性质,即可得到反比例函数图象在第一、三象限,进而得出,据此可得k的取值.
【详解】
解:点、都在反比例函数的图象上,,
在每个象限内,y随着x的增大而增大,
反比例函数图象在第一、三象限,
,
的值可以取等,答案不唯一
故答案为:.
【点睛】
本题考查反比例函数图象上的点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.
14、
【解析】
直接把分子相加减即可.
【详解】
=,故答案为:.
【点睛】
本题考查了分式的加减法,关键是要注意通分及约分的灵活应用.
15、1
【解析】
根据题意可以求得m的值和n的值,由A的坐标,可确定B的坐标,进而可以得到n的值.
【详解】
:∵点A(1,2),B(n,2)都在抛物线y=x2-4x+m上,
∴ ,
解得 或 ,
∴点B为(1,2)或(1,2),
∵点A(1,2),
∴点B只能为(1,2),
故n的值为1,
故答案为:1.
【点睛】
本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解.
16、1
【解析】
令k,则a=2k,b=3k,代入到原式化简的结果计算即可.
【详解】
令k,则a=2k,b=3k,∴原式=1.
故答案为:1.
【点睛】
本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.
17、3cm.
【解析】
根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.
【详解】
解:∵四边形ABCD是矩形,AC=6cm
∴OA=OC=OB=OD=3cm,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=3cm,
故答案为:3cm
【点睛】
本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分.
三、解答题(共7小题,满分69分)
18、 (1)1;(2)2-1.
【解析】
(1)分别计算负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根;
(2)先把括号内通分相减,再计算分式的除法,除以一个分式,等于乘它的分子、分母交换位置.
【详解】
(1)原式=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.
(2)原式=[﹣]•
=•
=,
当x=﹣2时,原式= ==2-1.
【点睛】
本题考查负指数幂、绝对值、零指数幂、特殊角的三角函数值、立方根以及分式的化简求值,解题关键是熟练掌握以上性质和分式的混合运算.
19、见解析,
【解析】
要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.
【详解】
证明:由折叠得:BC=EC,∠B=∠AEC,
∵矩形ABCD,
∴BC=AD,∠B=∠ADC=90°,
∴EC=DA,∠AEC=∠ADC=90°,
又∵∠AFD=∠CFE,
∴△ADF≌△CEF (AAS)
∴∠DAE=∠ECD.
【点睛】
本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.
20、(1)详见解析;(2)30.
【解析】
(1)利用切线的性质得∠CEO=90°,再证明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根据切线的判定定理得到结论;
(2)利用四边形FOBE是菱形得到OF=OB=BF=EF,则可判定△OBE为等边三角形,所以∠BOE=60°,然后利用互余可确定∠D的度数.
【详解】
(1)证明:∵CD与⊙O相切于点E,
∴OE⊥CD,
∴∠CEO=90°,
又∵OC∥BE,
∴∠COE=∠OEB,∠OBE=∠COA
∵OE=OB,
∴∠OEB=∠OBE,
∴∠COE=∠COA,
又∵OC=OC,OA=OE,
∴△OCA≌△OCE(SAS),
∴∠CAO=∠CEO=90°,
又∵AB为⊙O的直径,
∴AC为⊙O的切线;
(2)∵四边形FOBE是菱形,
∴OF=OB=BF=EF,
∴OE=OB=BE,
∴△OBE为等边三角形,
∴∠BOE=60°,
而OE⊥CD,
∴∠D=30°.
【点睛】
本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
21、(1);(2)这个游戏不公平,理由见解析.
【解析】
(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.
【详解】
解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,
故从袋中随机摸出一球,标号是1的概率为:;
(2)这个游戏不公平.
画树状图得:
∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,
∴P(甲胜)=,P(乙胜)=.
∴P(甲胜)≠P(乙胜),
故这个游戏不公平.
【点睛】
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
22、楼高AB为54.6米.
【解析】
过点C作CE⊥AB于E,解直角三角形求出CE和CE的长,进而求出AB的长.
【详解】
解:
如图,过点C作CE⊥AB于E,
则AE=CD=20,
∵CE====20,
BE=CEtanα=20×tan45°=20×1=20,
∴AB=AE+EB=20+20≈20×2.732≈54.6(米),
答:楼高AB为54.6米.
【点睛】
此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键.
23、(1)见解析;(2)1
【解析】
(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.
【详解】
(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.
∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.
在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.
又∵OA=OC,∴四边形AECF是平行四边形.
又∵EF⊥AC,∴平行四边形AECF是菱形;
(2)设AF=x.
∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.
【点睛】
本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.
24、(1);(2).
【解析】
(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;
(2)画出树状图,然后根据概率公式列式计算即可得解.
【详解】
(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,
∴抽到的卡片既是中心对称图形又是轴对称图形的概率是;
(2)根据题意画出树状图如下:
一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,
所以,P(抽出的两张卡片的图形是中心对称图形).
【点睛】
本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
浙江省绍兴县重点达标名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份浙江省绍兴县重点达标名校2021-2022学年中考冲刺卷数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列事件中是必然事件的是等内容,欢迎下载使用。
南开中学初重点达标名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份南开中学初重点达标名校2021-2022学年中考冲刺卷数学试题含解析,共21页。试卷主要包含了《九章算术》中有这样一个问题,cs30°的相反数是,正比例函数y=等内容,欢迎下载使用。
江苏省滨淮重点达标名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份江苏省滨淮重点达标名校2021-2022学年中考冲刺卷数学试题含解析,共19页。试卷主要包含了下列方程中,两根之和为2的是,下列运算正确的是,若,则的值为等内容,欢迎下载使用。