年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年湖北省天门经济开发区等重点名校中考数学模拟预测题含解析

    2021-2022学年湖北省天门经济开发区等重点名校中考数学模拟预测题含解析第1页
    2021-2022学年湖北省天门经济开发区等重点名校中考数学模拟预测题含解析第2页
    2021-2022学年湖北省天门经济开发区等重点名校中考数学模拟预测题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖北省天门经济开发区等重点名校中考数学模拟预测题含解析

    展开

    这是一份2021-2022学年湖北省天门经济开发区等重点名校中考数学模拟预测题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,已知x+=3,则x2+=等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是(  )
    A.6π B.4π C.8π D.4
    2.下列命题正确的是(  )
    A.对角线相等的四边形是平行四边形
    B.对角线相等的四边形是矩形
    C.对角线互相垂直的平行四边形是菱形
    D.对角线互相垂直且相等的四边形是正方形
    3.已知反比例函数,下列结论不正确的是(  )
    A.图象必经过点(﹣1,2) B.y随x的增大而增大
    C.图象在第二、四象限内 D.若,则
    4.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为(  )

    A.6 B.5 C.2 D.3
    5.一元二次方程x2+2x﹣15=0的两个根为(  )
    A.x1=﹣3,x2=﹣5 B.x1=3,x2=5
    C.x1=3,x2=﹣5 D.x1=﹣3,x2=5
    6.已知x+=3,则x2+=(  )
    A.7 B.9 C.11 D.8
    7.已知是二元一次方程组的解,则的算术平方根为( )
    A.±2 B. C.2 D.4
    8.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是  
    A. B. C. D.
    9.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( ).
    A. B.
    C. D.
    10.如图,一艘海轮位于灯塔P的南偏东70°方向的M处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P的北偏东40°的N处,则N处与灯塔P的 距离为

    A.40海里 B.60海里 C.70海里 D.80海里
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如果两圆的半径之比为,当这两圆内切时圆心距为3,那么当这两圆相交时,圆心距d的取值范围是__________.
    12.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于_____.

    13.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是__________.

    14.如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.

    15. 一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°==1.类似地,可以求得sin15°的值是_______.
    16.已知直线与抛物线交于A,B两点,则_______.
    三、解答题(共8题,共72分)
    17.(8分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.
    (1)在图1中证明小胖的发现;
    借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
    (2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
    (3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).

    18.(8分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).
    (1)求反比例函数和一次函数的表达式;
    (2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.

    19.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
    (1)求抛物线解析式并求出点D的坐标;
    (2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
    (3)当△CPE是等腰三角形时,请直接写出m的值.

    20.(8分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:
    等级
    非常了解
    比较了解
    只听说过
    不了解
    频数
    40
    120
    36
    4
    频率
    0.2
    m
    0.18
    0.02
    (1)本次问卷调查取样的样本容量为 ,表中的m值为 ;
    (2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;
    (3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?

    21.(8分)先化简,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.
    22.(10分)的除以20与18的差,商是多少?
    23.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F
    (1)证明:PC=PE;
    (2)求∠CPE的度数;
    (3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

    24.如图,⊙O的半径为4,B为⊙O外一点,连结OB,且OB=6.过点B作⊙O的切线BD,切点为点D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为点C.
    (1)求证:AD平分∠BAC;
    (2)求AC的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据题意,可判断出该几何体为圆柱.且已知底面半径以及高,易求表面积.
    解答:解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,
    那么它的表面积=2π×2+π×1×1×2=6π,故选A.
    2、C
    【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
    详解:对角线互相平分的四边形是平行四边形,A错误;
    对角线相等的平行四边形是矩形,B错误;
    对角线互相垂直的平行四边形是菱形,C正确;
    对角线互相垂直且相等的平行四边形是正方形;
    故选:C.
    点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    3、B
    【解析】
    试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.
    试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);
    B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;
    C、命题正确;
    D、命题正确.
    故选B.
    考点:反比例函数的性质
    4、C
    【解析】
    由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴OB=OD,OA=OC,AC=BD,
    ∴OA=OB,
    ∵BE:ED=1:3,
    ∴BE:OB=1:2,
    ∵AE⊥BD,
    ∴AB=OA,
    ∴OA=AB=OB,
    即△OAB是等边三角形,
    ∴∠ABD=60°,
    ∵AE⊥BD,AE=3,
    ∴AB=,
    故选C.
    【点睛】
    此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.
    5、C
    【解析】
    运用配方法解方程即可.
    【详解】
    解:x2+2x﹣15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.
    故选择C.
    【点睛】
    本题考查了解一元二次方程,选择合适的解方程方法是解题关键.
    6、A
    【解析】
    根据完全平方公式即可求出答案.
    【详解】
    ∵(x+)2=x2+2+
    ∴9=2+x2+,
    ∴x2+=7,
    故选A.
    【点睛】
    本题考查完全平方公式,解题的关键是熟练运用完全平方公式.
    7、C
    【解析】
    二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.
    【分析】∵是二元一次方程组的解,∴,解得.
    ∴.即的算术平方根为1.故选C.
    8、A
    【解析】
    根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
    【详解】
    ∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
    ∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
    ∴m<,
    故选A.
    【点睛】
    本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    9、B
    【解析】
    根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.
    【详解】
    根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.
    故选B.
    【点睛】
    此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.
    10、D
    【解析】
    分析:依题意,知MN=40海里/小时×2小时=80海里,
    ∵根据方向角的意义和平行的性质,∠M=70°,∠N=40°,
    ∴根据三角形内角和定理得∠MPN=70°.∴∠M=∠MPN=70°.
    ∴NP=NM=80海里.故选D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、.
    【解析】
    先根据比例式设两圆半径分别为,根据内切时圆心距列出等式求出半径,然后利用相交时圆心距与半径的关系求解.
    【详解】
    解:设两圆半径分别为,
    由题意,得3x-2x=3,解得,
    则两圆半径分别为,
    所以当这两圆相交时,圆心距d的取值范围是,
    即,
    故答案为.
    【点睛】
    本题考查了圆和圆的位置与两圆的圆心距、半径的数量之间的关系,熟练掌握圆心距与圆位置关系的数量关系是解决本题的关键.
    12、.
    【解析】
    试题分析:要求重叠部分△AEF的面积,选择AF作为底,高就等于AB的长;而由折叠可知∠AEF=∠CEF,由平行得∠CEF=∠AFE,代换后,可知AE=AF,问题转化为在Rt△ABE中求
    AE.因此设AE=x,由折叠可知,EC=x,BE=4﹣x,
    在Rt△ABE中,AB2+BE2=AE2,即32+(4﹣x)2=x2,
    解得:x=,即AE=AF=,
    因此可求得=×AF×AB=××3=.
    考点:翻折变换(折叠问题)
    13、.
    【解析】
    先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论.
    【详解】
    解:∵由图可知,黑色方砖4块,共有16块方砖,
    ∴黑色方砖在整个区域中所占的比值
    ∴它停在黑色区域的概率是;
    故答案为.
    【点睛】
    本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    14、, +2.
    【解析】
    当点P旋转至CA的延长线上时,CP=20,BC=2,利用勾股定理求出BP,再根据直角三角形斜边上的中线等于斜边的一半,可得CF的长;取AB的中点M,连接MF和CM,根据直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得FM的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.
    【详解】
    当点P旋转至CA的延长线上时,如图2.
    ∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,
    ∴BP=,
    ∵BP的中点是F,
    ∴CF=BP= .
    取AB的中点M,连接MF和CM,如图2.
    ∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,
    ∴AB=2.
    ∵M为AB中点,
    ∴CM=AB=,
    ∵将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,
    ∴AP=AD=4,
    ∵M为AB中点,F为BP中点,
    ∴FM=AP=2.
    当且仅当M、F、C三点共线且M在线段CF上时CF最大,
    此时CF=CM+FM=+2.
    故答案为, +2.

    【点睛】
    考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.
    15、.
    【解析】
    试题分析:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°==.故答案为.
    考点:特殊角的三角函数值;新定义.
    16、
    【解析】
    将一次函数解析式代入二次函数解析式中,得出关于x的一元二次方程,根据根与系数的关系得出“x +x =- = ,xx= =-1”,将原代数式通分变形后代入数据即可得出结论.
    【详解】
    将代入到中得,,整理得,,∴,,
    ∴.
    【点睛】
    此题考查了二次函数的性质和一次函数的性质,解题关键在于将一次函数解析式代入二次函数解析式

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)证明见解析;(3)∠EAF =m°.
    【解析】
    分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;
    (2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;
    (3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=m°.
    详(1)证明:如图1中,

    ∵∠BAC=∠DAE,
    ∴∠DAB=∠EAC,
    在△DAB和△EAC中,

    ∴△DAB≌△EAC,
    ∴BD=EC.
    (2)证明:如图2中,延长DC到E,使得DB=DE.

    ∵DB=DE,∠BDC=60°,
    ∴△BDE是等边三角形,
    ∴∠BD=BE,∠DBE=∠ABC=60°,
    ∴∠ABD=∠CBE,
    ∵AB=BC,
    ∴△ABD≌△CBE,
    ∴AD=EC,
    ∴BD=DE=DC+CE=DC+AD.
    ∴AD+CD=BD.
    (3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.

    由(1)可知△EAB≌△GAC,
    ∴∠1=∠2,BE=CG,
    ∵BD=DC,∠BDE=∠CDM,DE=DM,
    ∴△EDB≌△MDC,
    ∴EM=CM=CG,∠EBC=∠MCD,
    ∵∠EBC=∠ACF,
    ∴∠MCD=∠ACF,
    ∴∠FCM=∠ACB=∠ABC,
    ∴∠1=3=∠2,
    ∴∠FCG=∠ACB=∠MCF,
    ∵CF=CF,CG=CM,
    ∴△CFG≌△CFM,
    ∴FG=FM,
    ∵ED=DM,DF⊥EM,
    ∴FE=FM=FG,
    ∵AE=AG,AF=AF,
    ∴△AFE≌△AFG,
    ∴∠EAF=∠FAG=m°.
    点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.
    18、(1)y=;y=x-2;(2)(0,0)或(4,0)
    【解析】
    试题分析:(1)利用待定系数法即可求得函数的解析式;
    (2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.
    试题解析:(1)∵反比例函数y=(m≠0)的图象过点A(1,1),
    ∴1=
    ∴m=1.
    ∴反比例函数的表达式为y=.
    ∵一次函数y=kx+b的图象过点A(1,1)和B(0,-2).
    ∴,
    解得:,
    ∴一次函数的表达式为y=x-2;
    (2)令y=0,∴x-2=0,x=2,
    ∴一次函数y=x-2的图象与x轴的交点C的坐标为(2,0).
    ∵S△ABP=1,
    PC×1+PC×2=1.
    ∴PC=2,
    ∴点P的坐标为(0,0)、(4,0).
    【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S△ABP=S△ACP+S△BCP列方程是关键.
    19、(1)y=﹣x2+2x+3,D点坐标为();(2)当m=时,△CDP的面积存在最大值,最大值为;(3)m的值为 或 或.
    【解析】
    (1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;
    (2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;
    (3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值.
    【详解】
    (1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,
    ∴抛物线的解析式为y=﹣x2+2x+3;
    把C(0,3)代入y=﹣x+n,解得n=3,
    ∴直线CD的解析式为y=﹣x+3,
    解方程组,解得
    或,
    ∴D点坐标为(,);
    (2)存在.
    设P(m,﹣m2+2m+3),则E(m,﹣m+3),
    ∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,
    ∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,
    当m=时,△CDP的面积存在最大值,最大值为;
    (3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;
    当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;
    当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,
    综上所述,m的值为或或.

    【点睛】
    本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.
    20、 (1)200;0.6(2)非常了解20%,比较了解60%; 72°;(3) 900人
    【解析】
    (1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.
    【详解】
    解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6
    (2)非常了解20%,比较了解60%;
    非常了解的圆心角度数:360°×20%=72°

    (3)1500×60%=900(人)
    答:“比较了解”垃圾分类知识的人数约为900人.
    【点睛】
    此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.
    21、x+1,2.
    【解析】
    先根据单项式乘以多项式的运算法则、平方差公式计算后,再去掉括号,合并同类项化为最简后代入求值即可.
    【详解】
    原式=x2+x﹣(x2﹣1)
    =x2+x﹣x2+1
    =x+1,
    当x=1时,原式=2.
    【点睛】
    本题考查了整式的化简求值,根据整式的运算法则先把知识化为最简是解决问题的关键.
    22、
    【解析】
    根据题意可用乘的积除以20与18的差,所得的商就是所求的数,列式解答即可.
    【详解】
    解:×÷(20﹣18)
    【点睛】
    考查有理数的混合运算,列出式子是解题的关键.
    23、(1)证明见解析(2)90°(3)AP=CE
    【解析】
    (1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.
    【详解】
    (1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
    在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS), ∴PA=PC,∵PA=PE,∴PC=PE;
    (2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,
    ∵PA=PE, ∴∠DAP=∠E, ∴∠DCP=∠E, ∵∠CFP=∠EFD(对顶角相等),
    ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, 即∠CPF=∠EDF=90°;
    (3)、AP=CE
    理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,
    在△ABP和△CBP中, 又∵ PB=PB ∴△ABP≌△CBP(SAS),
    ∴PA=PC,∠BAP=∠DCP,
    ∵PA=PE,∴PC=PE,∴∠DAP=∠DCP, ∵PA=PC ∴∠DAP=∠E, ∴∠DCP=∠E
    ∵∠CFP=∠EFD(对顶角相等), ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
    即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC是等边三角形,∴PC=CE,∴AP=CE
    考点:三角形全等的证明
    24、(1)证明见解析;(2)AC=.
    【解析】
    (1)证明:连接OD.
    ∵BD是⊙O的切线,
    ∴OD⊥BD.
    ∵AC⊥BD,
    ∴OD∥AC,
    ∴∠2=∠1.
    ∵OA=OD.
    ∴∠1=∠1,
    ∴∠1=∠2,
    即AD平分∠BAC.
    (2)解:∵OD∥AC,
    ∴△BOD∽△BAC,
    ∴,即.
    解得.


    相关试卷

    山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析:

    这是一份山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列运算结果正确的是等内容,欢迎下载使用。

    湖北省武汉市高新区重点名校2021-2022学年中考数学模拟预测题含解析:

    这是一份湖北省武汉市高新区重点名校2021-2022学年中考数学模拟预测题含解析,共19页。试卷主要包含了对于点A,等内容,欢迎下载使用。

    湖北省天门市市级名校2022年中考数学模拟预测试卷含解析:

    这是一份湖北省天门市市级名校2022年中考数学模拟预测试卷含解析,共20页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map