


2021-2022学年湖北省武汉市武昌区南湖中学毕业升学考试模拟卷数学卷含解析
展开
这是一份2021-2022学年湖北省武汉市武昌区南湖中学毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了已知二次函数y=a,若一次函数y=等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有( )
A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890
C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=10890
2.如图所示的两个四边形相似,则α的度数是( )
A.60° B.75° C.87° D.120°
3.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )
A. B. C. D.
4.如图,在Rt△ABC中,∠C=90°, BE平分∠ABC,ED垂直平分AB于D,若AC=9,则AE的值是 ( )
A. B. C.6 D.4
5.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是( )
A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0
6.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是( )
A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=4
7.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为( )
A. B. C. D.
8.在平面直角坐标系中,位于第二象限的点是( )
A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)
9.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )
A. B. C. D.
10.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是( )
A.1<m< B.1≤m< C.1<m≤ D.1≤m≤
二、填空题(本大题共6个小题,每小题3分,共18分)
11.对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是_____.
12.如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.
13.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.
14.函数中,自变量的取值范围是______
15.已知x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是______.
16.如图,在△PAB中,PA=PB,M、N、K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=40°,则∠P的度数为___
三、解答题(共8题,共72分)
17.(8分)计算:|﹣1|﹣2sin45°+﹣
18.(8分)小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)
星期
一
二
三
四
五
每股涨跌(元)
+2
﹣1.4
+0.9
﹣1.8
+0.5
根据上表回答问题:
(1)星期二收盘时,该股票每股多少元?
(2)周内该股票收盘时的最高价,最低价分别是多少?
(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?
19.(8分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C.求双曲线的解析式;点P在x轴上,如果△ACP的面积为3,求点P的坐标.
20.(8分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?
21.(8分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
22.(10分)已知关于的二次函数
(1)当时,求该函数图像的顶点坐标.
(2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值
(3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.
23.(12分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
5台
1800元
第二周
4台
10台
3100元
(进价、售价均保持不变,利润=销售收入-进货成本)求A,B两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
24.二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).
(1)求二次函数图象的对称轴;
(2)当﹣4≤x≤1时,求y的取值范围.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得.
【详解】
解:设房价比定价180元增加x元,
根据题意,得(180+x﹣20)(50﹣)=1.
故选:C.
【点睛】
此题考查一元二次方程的应用问题,主要在于找到等量关系求解.
2、C
【解析】
【分析】根据相似多边形性质:对应角相等.
【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫
故选C
【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.
3、B
【解析】
根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.
【详解】
解:主视图,如图所示:
.
故选B.
【点睛】
本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.
4、C
【解析】
由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.
【详解】
解:∵BE平分∠ABC,
∴∠CBE=∠ABE,
∵ED垂直平分AB于D,
∴EA=EB,
∴∠A=∠ABE,
∴∠CBE=30°,
∴BE=2EC,即AE=2EC,
而AE+EC=AC=9,
∴AE=1.
故选C.
5、C
【解析】
分a>1和a<1两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.
【详解】
解:①a>1时,二次函数图象开口向上,
∵|x1﹣2|>|x2﹣2|,
∴y1>y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
②a<1时,二次函数图象开口向下,
∵|x1﹣2|>|x2﹣2|,
∴y1<y2,
无法确定y1+y2的正负情况,
a(y1﹣y2)>1,
综上所述,表达式正确的是a(y1﹣y2)>1.
故选:C.
【点睛】
本题主要考查二次函数的性质,利用了二次函数的对称性,关键要掌握根据二次项系数a的正负分情况讨论.
6、D
【解析】
由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.
【详解】
解:∵△OAB绕O点逆时针旋转60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
故选D.
【点睛】
本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
7、C
【解析】
由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=.
【详解】
第(1)个图形中面积为1的正方形有2个,
第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个,
…,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个.
【点睛】
本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.
8、D
【解析】
点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.
【详解】
根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,故选:D.
【点睛】
本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.
9、A
【解析】
∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
∴BC== ,
则cosB== ,
故选A
10、B
【解析】
根据一次函数的性质,根据不等式组即可解决问题;
【详解】
∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,
∴,
解得1≤m<.
故选:B.
【点睛】
本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
解:根据题意得:2※x=2x﹣2﹣x+3=x+1,
∵a<x+1<7,即a﹣1<x<6解集中有两个整数解,
∴a的范围为,
故答案为.
【点睛】
本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键.
12、
【解析】
【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.
【详解】直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),
以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,
OA2==4,点A2的坐标为(4,0),
这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)
以此类推便可求出点A2019的坐标为(22019,0),
则的长是,
故答案为:.
【点睛】本题主要考查了一次函数图象上点的坐标特征,弧长的计算,解题的关键找出点的坐标的变化规律、运用数形结合思想进行解题.
13、1
【解析】
本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.
【详解】
解:设利润为w元,
则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,
∵10≤x≤20,
∴当x=1时,二次函数有最大值25,
故答案是:1.
【点睛】
本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.
14、x≠1
【解析】
解:∵有意义,
∴x-1≠0,
∴x≠1;
故答案是:x≠1.
15、6
【解析】
已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,即x12=2 x1+1, x22=2 x2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可.
【详解】
∵x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,
∴x12﹣2 x1﹣1=0, x22﹣2 x2﹣1=0,x1+x2=2,x1·x2=-1,
即x12=2 x1+1, x22=2 x2+1,
∴=
故答案为6.
【点睛】
本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键.
16、100°
【解析】
由条件可证明△AMK≌△BKN,再结合外角的性质可求得∠A=∠MKN,再利用三角形内角和可求得∠P.
【详解】
解:∵PA=PB,
∴∠A=∠B,
在△AMK和△BKN中,
,
∴△AMK≌△BKN(SAS),
∴∠AMK=∠BKN,
∵∠A+∠AMK=∠MKN+∠BKN,
∴∠A=∠MKN=40°,
∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,
故答案为100°
【点睛】
本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK≌△BKN是解题的关键.
三、解答题(共8题,共72分)
17、﹣1
【解析】
直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.
【详解】
原式=(﹣1)﹣2×+2﹣4
=﹣1﹣+2﹣4
=﹣1.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
18、(1)25.6元;(2)收盘最高价为27元/股,收盘最低价为24.7元/股;(3)-51元,亏损51元.
【解析】
试题分析: (1)根据有理数的加减法的运算方法,求出星期二收盘时,该股票每股多少元即可.
(2)这一周内该股票星期一的收盘价最高,星期四的收盘价最低.
(3)用本周五以收盘价将全部股票卖出后得到的钱数减去买入股票与卖出股票均需支付的交易费,判断出他的收益情况如何即可.
试题解析:
(1)星期二收盘价为25+2−1.4=25.6(元/股)
答:该股票每股25.6元.
(2)收盘最高价为25+2=27(元/股)
收盘最低价为25+2−1.45+0.9−1.8=24.7(元/股)
答:收盘最高价为27元/股,收盘最低价为24.7元/股.
(3)(25.2-25) ×1000-5‰×1000×(25.2+25)=200-251=-51(元)
答:小王的本次收益为-51元.
19、(1)(2)(-6,0)或(-2,0).
【解析】
分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t的方程,则可求得P点坐标.
详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=;
(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面积为3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).
点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.
20、从甲班抽调了35人,从乙班抽调了1人
【解析】
分析:首先设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,根据题意列出一元一次方程,从而得出答案.
详解:设从甲班抽调了x人,那么从乙班抽调了(x﹣1)人,
由题意得,45﹣x=2[39﹣(x﹣1)], 解得:x=35, 则x﹣1=35﹣1=1.
答:从甲班抽调了35人,从乙班抽调了1人.
点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.
21、塔杆CH的高为42米
【解析】
作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE可得关于x的方程,解之可得.
【详解】
解:如图,作BE⊥DH于点E,
则GH=BE、BG=EH=4,
设AH=x,则BE=GH=GA+AH=23+x,
在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,
∴CE=CH﹣EH=tan55°•x﹣4,
∵∠DBE=45°,
∴BE=DE=CE+DC,即23+x=tan55°•x﹣4+15,
解得:x≈30,
∴CH=tan55°•x=1.4×30=42,
答:塔杆CH的高为42米.
【点睛】
本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.
22、(1) ,顶点坐标(1,-4);(2)m=1;(3)①当a>0时,y2>y1 ,②当a<0时,y1>y2 .
【解析】
试题分析:
(1)把a=2,b=4代入并配方,即可求出此时二次函数图象的顶点坐标;
(2)由题意把(m,t)和(-m,-t)代入(1)中所得函数的解析式,解方程组即可求得m的值;
(3)把点(1,0)代入可得b=a-2,由此可得抛物线的对称轴为直线:,再分a>0和a0时,,,
∵此时,且抛物线开口向上,
∴中,点B距离对称轴更远,
∴y10时,y1
相关试卷
这是一份2022年湖北省武汉市武昌区拼搏联盟毕业升学考试模拟卷数学卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,对于函数y=,下列说法正确的是等内容,欢迎下载使用。
这是一份2021-2022学年重庆市育才中学毕业升学考试模拟卷数学卷含解析,共15页。试卷主要包含了下列交通标志是中心对称图形的为,下列各组数中,互为相反数的是,计算的结果为,某一公司共有51名员工等内容,欢迎下载使用。
这是一份2021-2022学年陕西省博爱中学毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
