2021-2022学年黑龙江省肇源县中考数学模拟试题含解析
展开这是一份2021-2022学年黑龙江省肇源县中考数学模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是( )
A. B. C. D.
2.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=( )
A.15° B.30° C.45° D.60°
3.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )
A.205万 B. C. D.
4.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )
A.1种 B.2种 C.3种 D.4种
5.地球上的陆地面积约为149 000 000千米2,用科学记数法表示为 ( )
A.149×106千米2 B.14.9×107千米2
C.1.49×108千米2 D.0.149×109千2
6.义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为甲=89分,乙=89分,S甲2=195,S乙2=1.那么成绩较为整齐的是( )
A.甲班 B.乙班 C.两班一样 D.无法确定
7.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( )
A.﹣=10 B.﹣=10
C.﹣=10 D. +=10
8.如图,在菱形ABCD中,∠A=60°,E是AB边上一动点(不与A、B重合),且∠EDF=∠A,则下列结论错误的是( )
A.AE=BF B.∠ADE=∠BEF
C.△DEF是等边三角形 D.△BEF是等腰三角形
9.如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()
A.个 B.个 C.个 D.个
10.某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是( )
A.8 B.10 C.21 D.22
二、填空题(共7小题,每小题3分,满分21分)
11.若关于x的方程有两个不相等的实数根,则实数a的取值范围是______.
12.关于的方程有增根,则______.
13.若a、b为实数,且b=+4,则a+b=_____.
14.函数y= 中,自变量x的取值范围为_____.
15.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.
16.若关于x的方程有两个相等的实数根,则m的值是_________.
17.不等式组的最大整数解为_____.
三、解答题(共7小题,满分69分)
18.(10分)观察下列多面体,并把下表补充完整.
名称
三棱柱
四棱柱
五棱柱
六棱柱
图形
顶点数
6
10
12
棱数
9
12
面数
5
8
观察上表中的结果,你能发现、、之间有什么关系吗?请写出关系式.
19.(5分)先化简,再求值:,其中满足.
20.(8分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)B点坐标为 ,并求抛物线的解析式;
(2)求线段PC长的最大值;
(3)若△PAC为直角三角形,直接写出此时点P的坐标.
21.(10分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);
甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为 ;该班学生的身高数据的中位数是 ;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?
22.(10分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈,tan37°≈)
23.(12分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.
24.(14分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.
【详解】
根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,
A、,错误;
B、,错误;
C、,错误;
D、,正确;
故选D.
【点睛】
本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.
2、B
【解析】
根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.
【详解】
解:∵OA=AB,OA=OB,
∴△AOB是等边三角形,
∴∠AOB=60°,
∴∠ACB=30°,
故选B.
【点睛】
本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
3、C
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2 050 000将小数点向左移6位得到2.05,
所以2 050 000用科学记数法表示为:20.5×106,
故选C.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、B
【解析】
首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.
【详解】
解:设毽子能买x个,跳绳能买y根,根据题意可得:
3x+5y=35,
y=7-x,
∵x、y都是正整数,
∴x=5时,y=4;
x=10时,y=1;
∴购买方案有2种.
故选B.
【点睛】
本题主要考查二元一次方程的应用,关键在于根据题意列方程.
5、C
【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
解:149 000 000=1.49×2千米1.
故选C.
把一个数写成a×10n的形式,叫做科学记数法,其中1≤|a|<10,n为整数.因此不能写成149×106而应写成1.49×2.
6、B
【解析】
根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论.
【详解】
∵S甲2>S乙2,
∴成绩较为稳定的是乙班。
故选:B.
【点睛】
本题考查了方差,解题的关键是掌握方差的概念进行解答.
7、A
【解析】
根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.
【详解】
设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
根据题意列方程为:.
故选:.
【点睛】
此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
8、D
【解析】
连接BD,可得△ADE≌△BDF,然后可证得DE=DF,AE=BF,即可得△DEF是等边三角形,然后可证得∠ADE=∠BEF.
【详解】
连接BD,∵四边形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等边三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,
,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故A正确;
∵∠EDF=60°,
∴△EDF是等边三角形,
∴C正确;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故B正确.
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF.
故D错误.
故选D.
【点睛】
本题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题.
9、D
【解析】
求出不等式组的解集,根据已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.
【详解】
解不等式2x−a≥0,得:x≥,
解不等式3x−b≤0,得:x≤,
∵不等式组的整数解仅有x=2、x=3,
则1<≤2、3≤<4,
解得:2<a≤4、9≤b<12,
则a=3时,b=9、10、11;
当a=4时,b=9、10、11;
所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,
故选:D.
【点睛】
本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值.
10、D
【解析】
分析:根据条形统计图得到各数据的权,然后根据中位数的定义求解.
详解:一共30个数据,第15个数和第16个数都是22,所以中位数是22.
故选D.
点睛:考查中位数的定义,看懂条形统计图是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、a>﹣.
【解析】
试题分析:已知关于x的方程2x2+x﹣a=0有两个不相等的实数根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.
考点:根的判别式.
12、-1
【解析】
根据分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.
故答案为-1.
点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.
13、5或1
【解析】
根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a的值,b的值,根据有理数的加法,可得答案.
【详解】
由被开方数是非负数,得
,
解得a=1,或a=﹣1,b=4,
当a=1时,a+b=1+4=5,
当a=﹣1时,a+b=﹣1+4=1,
故答案为5或1.
【点睛】
本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.
14、x≠1.
【解析】
该函数是分式,分式有意义的条件是分母不等于0,故分母x-1≠0,解得x的范围.
【详解】
根据题意得:x−1≠0,
解得:x≠1.
故答案为x≠1.
【点睛】
本题考查了函数自变量的取值范围,解题的关键是熟练的掌握分式的意义.
15、2
【解析】
连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.
【详解】
解:连接AD交EF与点M′,连结AM.
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC•AD=×4×AD=12,解得AD=1,
∵EF是线段AB的垂直平分线,
∴AM=BM.
∴BM+MD=MD+AM.
∴当点M位于点M′处时,MB+MD有最小值,最小值1.
∴△BDM的周长的最小值为DB+AD=2+1=2.
【点睛】
本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.
16、m=-
【解析】
根据题意可以得到△=0,从而可以求得m的值.
【详解】
∵关于x的方程有两个相等的实数根,
∴△=,
解得:.
故答案为.
17、﹣1.
【解析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其最大整数解.
【详解】
,
解不等式①得:
x≤1,
解不等式②得
x-1>1x,
x-1x>1,
-x>1,
x<-1,
∴ 不等式组的解集为x<-1,
∴ 不等式组的最大整数解为-1.
故答案为-1.
【点睛】
本题考查了一元一次不等式组的整数解,解题的关键是熟练的掌握一元一次不等式组的整数解.
三、解答题(共7小题,满分69分)
18、8,15,18,6,7;
【解析】
分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与n棱柱的关系,可知n棱柱一定有(n+1)个面,1n个顶点和3n条棱,进而得出答案,
利用前面的规律得出a,b,c之间的关系.
详解:填表如下:
名称
三棱柱
四棱柱
五棱柱
六棱柱
图形
顶点数a
6
8
10
11
棱数b
9
11
15
18
面数c
5
6
7
8
根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+1个面,共有1n个顶点,共有3n条棱;
故a,b,c之间的关系:a+c-b=1.
点睛:此题通过研究几个棱柱中顶点数、棱数、面数的关系探索出n棱柱中顶点数、棱数、面数之间的关系(即欧拉公式),掌握常见棱柱的特征,可以总结一般规律:n棱柱有(n+1)个面,1n个顶点和3n条棱是解题关键.
19、1
【解析】
试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.
试题解析:
原式=
∵x2−x−1=0,∴x2=x+1,
则原式=1.
20、(1)(4,6);y=1x1﹣8x+6(1);(3)点P的坐标为(3,5)或().
【解析】
(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.
(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.
(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论.
【详解】
解:(1)∵B(4,m)在直线y=x+1上,
∴m=4+1=6,
∴B(4,6),
故答案为(4,6);
∵A(,),B(4,6)在抛物线y=ax1+bx+6上,
∴,解得,
∴抛物线的解析式为y=1x1﹣8x+6;
(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),
∴PC=(n+1)﹣(1n1﹣8n+6),
=﹣1n1+9n﹣4,
=﹣1(n﹣)1+,
∵PC>0,
∴当n=时,线段PC最大且为.
(3)∵△PAC为直角三角形,
i)若点P为直角顶点,则∠APC=90°.
由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;
ii)若点A为直角顶点,则∠PAC=90°.
如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.
过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,
∴MN=AN=,
∴OM=ON+MN=+=3,
∴M(3,0).
设直线AM的解析式为:y=kx+b,
则:,解得,
∴直线AM的解析式为:y=﹣x+3 ①
又抛物线的解析式为:y=1x1﹣8x+6 ②
联立①②式,
解得:或(与点A重合,舍去),
∴C(3,0),即点C、M点重合.
当x=3时,y=x+1=5,
∴P1(3,5);
iii)若点C为直角顶点,则∠ACP=90°.
∵y=1x1﹣8x+6=1(x﹣1)1﹣1,
∴抛物线的对称轴为直线x=1.
如图1,作点A(,)关于对称轴x=1的对称点C,
则点C在抛物线上,且C(,).
当x=时,y=x+1=.
∴P1(,).
∵点P1(3,5)、P1(,)均在线段AB上,
∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).
【点睛】
本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.
21、 (1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4).
【解析】
(1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.
【详解】
解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)
(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;
将甲的数据相加可得10+15+20+10+5=60;
由题意可知159.5﹣164.5这一部分所对应的人数为20人,
所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,
故答案为120°;
(3)根据中位数的求法,将甲的数据从小到大依次排列,
可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1.
故答案为160或1;
(4)列树状图得:
P(一男一女)==.
22、不满足安全要求,理由见解析.
【解析】
在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.
【详解】
解:施工方提供的设计方案不满足安全要求,理由如下:
在Rt△ABC中,AC=15m,∠ABC=45°,
∴BC==15m.
在Rt△EFG中,EG=15m,∠EFG=37°,
∴GF=≈=20m.
∵EG=AC=15m,AC⊥BC,EG⊥BC,
∴EG∥AC,
∴四边形EGCA是矩形,
∴GC=EA=2m,
∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.
∴施工方提供的设计方案不满足安全要求.
23、(1)CD=BE,理由见解析;(1)证明见解析.
【解析】
(1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;
(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.
【详解】
解:(1)CD=BE,理由如下:
∵△ABC和△ADE为等腰三角形,
∴AB=AC,AD=AE,
∵∠EAD=∠BAC,
∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
即∠EAB=∠CAD,
在△EAB与△CAD中,
∴△EAB≌△CAD,
∴BE=CD;
(1)∵∠BAC=90°,
∴△ABC和△ADE都是等腰直角三角形,
∴∠ABF=∠C=45°,
∵△EAB≌△CAD,
∴∠EBA=∠C,
∴∠EBA=45°,
∴∠EBF=90°,
在Rt△BFE中,BF1+BE1=EF1,
∵AF平分DE,AE=AD,
∴AF垂直平分DE,
∴EF=FD,
由(1)可知,BE=CD,
∴BF1+CD1=FD1.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.
24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
【解析】
详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
解得,
答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得
,
解得:6≤a≤8,
因为a是整数,
所以a=6,7,8;
则(10-a)=4,3,2;
三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
【点睛】
此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
相关试卷
这是一份黑龙江省红光农场学校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=ax2+bx+c,下列计算正确的是等内容,欢迎下载使用。
这是一份2021-2022学年镇江外国语中考数学模拟试题含解析,共22页。试卷主要包含了计算,下列命题是真命题的是等内容,欢迎下载使用。
这是一份2021-2022学年重庆市中学中考数学模拟试题含解析,共19页。试卷主要包含了如果,则a的取值范围是,若x>y,则下列式子错误的是等内容,欢迎下载使用。