2021-2022学年黑龙江省黑河市1中学重点名校中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.﹣的绝对值是( )
A.﹣ B. C.﹣2 D.2
2.一个正多边形的内角和为900°,那么从一点引对角线的条数是( )
A.3 B.4 C.5 D.6
3.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( )
A.20 B.25 C.30 D.35
4.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是( )
A. B. C. D.
5.一元二次方程x2﹣2x=0的根是( )
A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣2
6.下列二次根式中,是最简二次根式的是( )
A. B. C. D.
7.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )
A. B. C. D.
8.下列说法中,正确的是( )
A.不可能事件发生的概率为0
B.随机事件发生的概率为
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
9.下列各数中,为无理数的是( )
A. B. C. D.
10.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,PC是⊙O的直径,PA切⊙O于点P,AO交⊙O于点B;连接BC,若,则______.
12.方程=1的解是___.
13.计算:a3÷(﹣a)2=_____.
14.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.
15.如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为________.
16.估计无理数在连续整数___与____之间.
三、解答题(共8题,共72分)
17.(8分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
18.(8分)某单位为了扩大经营,分四次向社会进行招工测试,测试后对成绩合格人数与不合格人数进行统计,并绘制成如图所示的不完整的统计图.
(1)测试不合格人数的中位数是 .
(2)第二次测试合格人数为50人,到第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,若这两次测试的平均增长率相同,求平均增长率;
(3)在(2)的条件下补全条形统计图和扇形统计图.
19.(8分)解不等式组,并写出其所有的整数解.
20.(8分)解方程:1+
21.(8分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.
(1)求证:△AEH≌△CGF;
(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由
22.(10分)计算: +()﹣2﹣|1﹣|﹣(π+1)0.
23.(12分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(1)求点Q落在直线y=﹣x﹣1上的概率.
24.在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:
规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据求绝对值的法则,直接计算即可解答.
【详解】
,
故选:B.
【点睛】
本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键.
2、B
【解析】
n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.
【详解】
设这个正多边形的边数是n,则
(n-2)•180°=900°,
解得:n=1.
则这个正多边形是正七边形.
所以,从一点引对角线的条数是:1-3=4.
故选B
【点睛】
本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.
3、B
【解析】
设可贷款总量为y,存款准备金率为x,比例常数为k,则由题意可得:
,,
∴,
∴当时,(亿),
∵400-375=25,
∴该行可贷款总量减少了25亿.
故选B.
4、D
【解析】
根据轴对称图形的概念求解.
【详解】
解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.
故选D.
【点睛】
本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形
5、C
【解析】
方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
【详解】
方程变形得:x(x﹣1)=0,
可得x=0或x﹣1=0,
解得:x1=0,x1=1.
故选C.
【点睛】
考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.
6、B
【解析】
根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.
【详解】
A、 =4,不符合题意;
B、是最简二次根式,符合题意;
C、=,不符合题意;
D、=,不符合题意;
故选B.
【点睛】
本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
7、B
【解析】
根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
【详解】
连接BD,
∵四边形ABCD是菱形,∠A=60°,
∴∠ADC=120°,
∴∠1=∠2=60°,
∴△DAB是等边三角形,
∵AB=2,
∴△ABD的高为,
∵扇形BEF的半径为2,圆心角为60°,
∴∠4+∠5=60°,∠3+∠5=60°,
∴∠3=∠4,
设AD、BE相交于点G,设BF、DC相交于点H,
在△ABG和△DBH中,
,
∴△ABG≌△DBH(ASA),
∴四边形GBHD的面积等于△ABD的面积,
∴图中阴影部分的面积是:S扇形EBF-S△ABD=
=.
故选B.
8、A
【解析】
试题分析:不可能事件发生的概率为0,故A正确;
随机事件发生的概率为在0到1之间,故B错误;
概率很小的事件也可能发生,故C错误;
投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;
故选A.
考点:随机事件.
9、D
【解析】
A.=2,是有理数;B.=2,是有理数;C.,是有理数;D.,是无理数,
故选D.
10、C
【解析】
画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.
【详解】
解:画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:.
故答案为C.
【点睛】
本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、26°
【解析】
根据圆周角定理得到∠AOP=2∠C=64°,根据切线的性质定理得到∠APO=90°,根据直角三角形两锐角互余计算即可.
【详解】
由圆周角定理得:∠AOP=2∠C=64°.
∵PC是⊙O的直径,PA切⊙O于点P,∴∠APO=90°,∴∠A=90°﹣∠AOP=90°﹣64°=26°.
故答案为:26°.
【点睛】
本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
12、x=﹣4
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
去分母得:3+2x=x﹣1,
解得:x=﹣4,
经检验x=﹣4是分式方程的解.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
13、a
【解析】
利用整式的除法运算即可得出答案.
【详解】
原式,
.
【点睛】
本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.
14、1-1.
【解析】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解.
【详解】
将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.
∵AB=AC=2,∠BAC=120°,
∴∠ACB=∠B=∠ACF=10°,
∴∠ECG=60°.
∵CF=BD=2CE,
∴CG=CE,
∴△CEG为等边三角形,
∴EG=CG=FG,
∴∠EFG=∠FEG=∠CGE=10°,
∴△CEF为直角三角形.
∵∠BAC=120°,∠DAE=60°,
∴∠BAD+∠CAE=60°,
∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.
在△ADE和△AFE中,
,
∴△ADE≌△AFE(SAS),
∴DE=FE.
设EC=x,则BD=CF=2x,DE=FE=6-1x,
在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,
EF==x,
∴6-1x=x,
x=1-,
∴DE=x=1-1.
故答案为:1-1.
【点睛】
本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.
15、-1
【解析】
试题分析:∵正方形ADEF的面积为4,
∴正方形ADEF的边长为2,
∴BF=2AF=4,AB=AF+BF=2+4=1.
设B点坐标为(t,1),则E点坐标(t-2,2),
∵点B、E在反比例函数y=的图象上,
∴k=1t=2(t-2),
解得t=-1,k=-1.
考点:反比例函数系数k的几何意义.
16、3 4
【解析】
先找到与11相邻的平方数9和16,求出算术平方根即可解题.
【详解】
解:∵,
∴,
∴无理数在连续整数3与4之间.
【点睛】
本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.
三、解答题(共8题,共72分)
17、(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).
【解析】
(1)利用待定系数法进行求解即可得;
(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;
(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.
【详解】
(1)∵抛物线过点B(6,0)、C(﹣2,0),
∴设抛物线解析式为y=a(x﹣6)(x+2),
将点A(0,6)代入,得:﹣12a=6,
解得:a=﹣,
所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;
(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,
设直线AB解析式为y=kx+b,
将点A(0,6)、B(6,0)代入,得:
,
解得:,
则直线AB解析式为y=﹣x+6,
设P(t,﹣t2+2t+6)其中0<t<6,
则N(t,﹣t+6),
∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,
∴S△PAB=S△PAN+S△PBN
=PN•AG+PN•BM
=PN•(AG+BM)
=PN•OB
=×(﹣t2+3t)×6
=﹣t2+9t
=﹣(t﹣3)2+,
∴当t=3时,△PAB的面积有最大值;
(3)△PDE为等腰直角三角形,
则PE=PD,
点P(m,-m2+2m+6),
函数的对称轴为:x=2,则点E的横坐标为:4-m,
则PE=|2m-4|,
即-m2+2m+6+m-6=|2m-4|,
解得:m=4或-2或5+或5-(舍去-2和5+)
故点P的坐标为:(4,6)或(5-,3-5).
【点睛】
本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.
18、(1)1;(2)这两次测试的平均增长率为20%;(3)55%.
【解析】
(1)将四次测试结果排序,结合中位数的定义即可求出结论;
(2)由第四次测试合格人数为每次测试不合格人数平均数的2倍少18人,可求出第四次测试合格人数,设这两次测试的平均增长率为x,由第二次、第四次测试合格人数,即可得出关于x的一元二次方程,解之取其中的正值即可得出结论;
(3)由第二次测试合格人数结合平均增长率,可求出第三次测试合格人数,根据不合格总人数÷参加测试的总人数×100%即可求出不合格率,进而可求出合格率,再将条形统计图和扇形统计图补充完整,此题得解.
【详解】
解:(1)将四次测试结果排序,得:30,40,50,60,
∴测试不合格人数的中位数是(40+50)÷2=1.
故答案为1;
(2)∵每次测试不合格人数的平均数为(60+40+30+50)÷4=1(人),
∴第四次测试合格人数为1×2﹣18=72(人).
设这两次测试的平均增长率为x,
根据题意得:50(1+x)2=72,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),
∴这两次测试的平均增长率为20%;
(3)50×(1+20%)=60(人),
(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,
1﹣1%=55%.
补全条形统计图与扇形统计图如解图所示.
【点睛】
本题考查了一元二次方程的应用、扇形统计图、条形统计图、中位数以及算术平均数,解题的关键是:(1)牢记中位数的定义;(2)找准等量关系,正确列出一元二次方程;(3)根据数量关系,列式计算求出统计图中缺失数据.
19、不等式组的解集为1≤x<2,该不等式组的整数解为1,2,1.
【解析】
先求出不等式组的解集,即可求得该不等式组的整数解.
【详解】
由①得,x≥1,
由②得,x<2.
所以不等式组的解集为1≤x<2,
该不等式组的整数解为1,2,1.
【点睛】
本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
20、无解.
【解析】
两边都乘以x(x-3),去分母,化为整式方程求解即可.
【详解】
解:去分母得:x2﹣3x﹣x2=3x﹣18,
解得:x=3,
经检验x=3是增根,分式方程无解.
【点睛】
题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
21、(1)见解析;(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由见解析.
【解析】
分析:(1)由正方形的性质得出∠A=∠C=90°,AB=BC=CD=DA,由AE=BF=CG=DH证出AH=CF,由SAS证明△AEH≌△CGF即可求解;
(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心.
详解:(1)证明:∵四边形ABCD是正方形,
∴∠A=∠C=90°,AB=BC=CD=DA,
∵AE=BF=CG=DH,
∴AH=CF,
在△AEH与△CGF中,
AH=CF,∠A=∠C,AE=CG,
∴△AEH≌△CGF(SAS);
(2)直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:
连接AC、EG,交点为O;如图所示:
∵四边形ABCD是正方形,
∴AB∥CD,
∴∠OAE=∠OCG,
在△AOE和△COG中,
∠OAE=∠OCG,∠AOE=∠COG,AE=CG,
∴△AOE≌△COG(AAS),
∴OA=OC,OE=OG,
即O为AC的中点,
∵正方形的对角线互相平分,
∴O为对角线AC、BD的交点,即O为正方形的中心.
点睛:考查了正方形的性质与判定、全等三角形的判定与性质等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线证明三角形全等才能得出结果.
22、
【解析】
先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;
【详解】
解:原式
【点睛】
考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.
23、 (1)见解析;(1)
【解析】
试题分析:先用列表法写出点Q的所有可能坐标,再根据概率公式求解即可.
(1)由题意得
1
1
-1
(1,-1)
(1,-1)
-1
(1,-1)
(1,-1)
-2
(1,-2)
(1,-2)
(1)共有6种等可能情况,符合条件的有1种
P(点Q在直线y=−x−1上)=.
考点:概率公式
点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.
24、(1):,,,,,,,,共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析
【解析】
(1)利用列举法,列举所有的可能情况即可;
(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.
【详解】
(1)所有可能出现的结果如下:,,,,,,,,共9种;
(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,
∴在规划1中,(小黄赢);
红心牌点数是黑桃牌点数的整倍数有4种可能,
∴在规划2中,(小黄赢).
∵,∴小黄要在游戏中获胜,小黄会选择规则1.
【点睛】
考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
黑龙江省鹤岗市重点中学2021-2022学年中考数学押题试卷含解析: 这是一份黑龙江省鹤岗市重点中学2021-2022学年中考数学押题试卷含解析,共17页。试卷主要包含了下列计算正确的是,已知实数a、b满足,则等内容,欢迎下载使用。
黑龙江省黑河市重点中学2021-2022学年中考猜题数学试卷含解析: 这是一份黑龙江省黑河市重点中学2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2021-2022学年黑龙江省黑河市三县重点达标名校中考一模数学试题含解析: 这是一份2021-2022学年黑龙江省黑河市三县重点达标名校中考一模数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。