终身会员
搜索
    上传资料 赚现金
    2021-2022学年湖南省长沙市明德中学十校联考最后数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年湖南省长沙市明德中学十校联考最后数学试题含解析01
    2021-2022学年湖南省长沙市明德中学十校联考最后数学试题含解析02
    2021-2022学年湖南省长沙市明德中学十校联考最后数学试题含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南省长沙市明德中学十校联考最后数学试题含解析

    展开
    这是一份2021-2022学年湖南省长沙市明德中学十校联考最后数学试题含解析,共23页。试卷主要包含了下列说法正确的是,的值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有( )

    A.①④ B.①③ C.①②③ D.②③④
    2.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是(  )

    A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5
    C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×5
    3.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是(  )
    A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣1
    4.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是( )
    A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2
    5.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是(  )

    A. B. C. D.
    6.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是(  )

    A.主视图 B.俯视图 C.左视图 D.一样大
    7.下列说法正确的是(  )
    A.某工厂质检员检测某批灯泡的使用寿命采用普查法
    B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6
    C.12名同学中有两人的出生月份相同是必然事件
    D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是
    8.若实数m满足,则下列对m值的估计正确的是(  )
    A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<2
    9.的值是
    A. B. C. D.
    10.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( )
    A.1种 B.2种 C.3种 D.6种
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_____.
    12.若圆锥的地面半径为,侧面积为,则圆锥的母线是__________.
    13.因式分解:   .
    14.若直角三角形两边分别为6和8,则它内切圆的半径为_____.
    15.已知是整数,则正整数n的最小值为___
    16.电子跳蚤游戏盘是如图所示的△ABC,AB=AC=BC=1.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1= CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2= AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3= BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2016与点P2017之间的距离为_________.

    三、解答题(共8题,共72分)
    17.(8分)定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.
    (1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是   ,推断的数学依据是   .
    (2)如图②,在△ABC中,∠B=15°,AB=3,BC=8,AD为边BC的中线,求边BC的中垂距.
    (3)如图③,在矩形ABCD中,AB=6,AD=1.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.

    18.(8分)先化简后求值:已知:x=﹣2,求的值.
    19.(8分)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.

    (1)求抛物线的解析式;
    (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
    (3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    20.(8分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且
    A(-1,0),B(4,0),∠ACB=90°.
    (1)求过A、B、C三点的抛物线解析式;
    (2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;
    (3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.

    图1 备用图
    21.(8分)综合与探究:
    如图,已知在△ABC 中,AB=AC,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点在二次函数的图像上.
    (1)求二次函数的表达式;
    (2)求点 A,B 的坐标;
    (3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.

    22.(10分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线()过E,A′两点.

    (1)填空:∠AOB= °,用m表示点A′的坐标:A′( , );
    (2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;
    (3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
    ①求a,b,m满足的关系式;
    ②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.
    23.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数 的图象的两个交点.
    (1)求反比例函数和一次函数的解析式;
    (2)求直线AB与x轴的交点C的坐标及△AOB的面积;
    (3)求方程的解集(请直接写出答案).

    24.如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.
    【详解】
    解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;
    观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,
    则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;
    所有点中,只有点D到A距离为2个单位,故③正确;
    因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.
    故选:C.
    【点睛】
    本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.
    2、D
    【解析】
    试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5
    考点:列方程
    点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.
    3、A
    【解析】
    根据题意可知x=-1,
    平均数=(-6-1-1-1+2+1)÷6=-1,
    ∵数据-1出现两次最多,
    ∴众数为-1,
    极差=1-(-6)=2,
    方差= [(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.
    故选A.
    4、B
    【解析】
    分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.
    【详解】
    ∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,
    ∴y1==6,y2==3,y3==-2,
    ∵﹣2<3<6,
    ∴y3<y2<y1,
    故选B.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.
    5、C
    【解析】
    根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出.
    【详解】
    ∵△ABC为等边三角形,
    ∴∠B=∠C=60°,BC=AB=a,PC=a-x.
    ∵∠APD=60°,∠B=60°,
    ∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
    ∴∠BAP=∠CPD,
    ∴△ABP∽△PCD,
    ∴,即,
    ∴y=- x2+x.
    故选C.
    【点睛】
    考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.
    6、C
    【解析】
    如图,该几何体主视图是由5个小正方形组成,
    左视图是由3个小正方形组成,
    俯视图是由5个小正方形组成,
    故三种视图面积最小的是左视图,
    故选C.

    7、B
    【解析】
    分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.
    【详解】
    A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;
    B. 根据平均数是4求得a的值为2,则方差为 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;
    C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;
    D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.
    故答案选B.
    【点睛】
    本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.
    8、A
    【解析】
    试题解析:∵,
    ∴m2+2+=0,
    ∴m2+2=-,
    ∴方程的解可以看作是函数y=m2+2与函数y=-,
    作函数图象如图,
    在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,
    当m=-2时y=m2+2=4+2=6,y=-=-=2,
    ∵6>2,
    ∴交点横坐标大于-2,
    当m=-1时,y=m2+2=1+2=3,y=-=-=4,
    ∵3<4,
    ∴交点横坐标小于-1,
    ∴-2<m<-1.
    故选A.

    考点:1.二次函数的图象;2.反比例函数的图象.
    9、D
    【解析】
    根据特殊角三角函数值,可得答案.
    【详解】
    解:,
    故选:D.
    【点睛】
    本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
    10、C
    【解析】
    试题分析:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选C.
    考点:正方体相对两个面上的文字.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.
    【详解】
    联立得:,
    ①×2+②,得:10x=20,
    解得:x=2,
    将x=2代入①,得:1-y=1,
    解得:y=0,
    则,
    将x=2、y=0代入,得:,
    解得:,
    则mn=1,
    故答案为1.
    【点睛】
    此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
    12、13
    【解析】
    试题解析:圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.
    设母线长为R,则:
    解得:
    故答案为13.
    13、.
    【解析】
    要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
    先提取公因式后继续应用平方差公式分解即可:.
    14、2或-1
    【解析】
    根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.
    【详解】
    若8是直角边,则该三角形的斜边的长为:,
    ∴内切圆的半径为:;
    若8是斜边,则该三角形的另一条直角边的长为:,
    ∴内切圆的半径为:.
    故答案为2或-1.
    【点睛】
    本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.
    15、1
    【解析】
    因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
    【详解】
    ∵,且是整数,
    ∴是整数,即1n是完全平方数;
    ∴n的最小正整数值为1.
    故答案为:1.
    【点睛】
    主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
    16、3
    【解析】
    ∵△ABC为等边三角形,边长为1,根据跳动规律可知,
    ∴P0P1=3,P1P2=2,P2P3=3,P3P4=2,…
    观察规律:当落点脚标为奇数时,距离为3,当落点脚标为偶数时,距离为2,
    ∵2017是奇数,
    ∴点P2016与点P2017之间的距离是3.
    故答案为:3.
    【点睛】考查的是等边三角形的性质,根据题意求出P0P1,P1P2,P2P3,P3P4的值,找出规律是解答此题的关键.

    三、解答题(共8题,共72分)
    17、(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等;(2)1;(3).
    【解析】
    试题分析:(1)根据线段的垂直平分线的性质即可判断.
    (2)如图②中,作AE⊥BC于E.根据已知得出AE=BE,再求出BD的长,即可求出DE的长.
    (3)如图③中,作CH⊥AF于H,先证△ADE≌△FCE,得出AE=EF,利用勾股定理求出AE的长,然后证明△ADE∽△CHE,建立方程求出EH即可.
    解:(1)等腰三角形;线段的垂直平分线上的点到两端的距离相等
    (2)解:如图②中,作AE⊥BC于E.

    在Rt△ABE中,∵∠AEB=90°,∠B=15°,AB=3 ,
    ∴AE=BE=3,
    ∵AD为BC边中线,BC=8,
    ∴BD=DC=1,
    ∴DE=BD﹣BE=1﹣3=1,
    ∴边BC的中垂距为1
    (3)解:如图③中,作CH⊥AF于H.

    ∵四边形ABCD是矩形,
    ∴∠D=∠EHC=∠ECF=90°,AD∥BF,
    ∵DE=EC,∠AED=∠CEF,
    ∴△ADE≌△FCE,
    ∴AE=EF,
    在Rt△ADE中,∵AD=1,DE=3,
    ∴AE= =5,
    ∵∠D=EHC,∠AED=∠CEH,
    ∴△ADE∽△CHE,
    ∴ = ,
    ∴ = ,
    ∴EH= ,
    ∴△ACF中边AF的中垂距为
    18、
    【解析】
    先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
    【详解】
    解:原式=1﹣•(÷)=1﹣••=1﹣=,
    当x=﹣2时,
    原式===.
    【点睛】
    本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
    19、(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,).
    【解析】
    分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;
    (2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;
    (3)存在四种情况:
    如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.
    详解:(1)如图1,设抛物线与x轴的另一个交点为D,

    由对称性得:D(3,0),
    设抛物线的解析式为:y=a(x-1)(x-3),
    把A(0,3)代入得:3=3a,
    a=1,
    ∴抛物线的解析式;y=x2-4x+3;
    (2)如图2,设P(m,m2-4m+3),

    ∵OE平分∠AOB,∠AOB=90°,
    ∴∠AOE=45°,
    ∴△AOE是等腰直角三角形,
    ∴AE=OA=3,
    ∴E(3,3),
    易得OE的解析式为:y=x,
    过P作PG∥y轴,交OE于点G,
    ∴G(m,m),
    ∴PG=m-(m2-4m+3)=-m2+5m-3,
    ∴S四边形AOPE=S△AOE+S△POE,
    =×3×3+PG•AE,
    =+×3×(-m2+5m-3),
    =-m2+m,
    =(m-)2+,
    ∵-<0,
    ∴当m=时,S有最大值是;
    (3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,

    ∵△OPF是等腰直角三角形,且OP=PF,
    易得△OMP≌△PNF,
    ∴OM=PN,
    ∵P(m,m2-4m+3),
    则-m2+4m-3=2-m,
    解得:m=或,
    ∴P的坐标为(,)或(,);
    如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,

    同理得△ONP≌△PMF,
    ∴PN=FM,
    则-m2+4m-3=m-2,
    解得:x=或;
    P的坐标为(,)或(,);
    综上所述,点P的坐标是:(,)或(,)或(,)或(,).
    点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.
    20、见解析
    【解析】
    分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.
    (2)分两种情况进行讨论即可.
    (3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.
    详解:(1)易证,得,
    ∴OC=2,∴C(0,2),
    ∵抛物线过点A(-1,0),B(4,0)
    因此可设抛物线的解析式为
    将C点(0,2)代入得:,即
    ∴抛物线的解析式为
    (2)如图2,

    当时,则P1(,2),
    当 时,
    ∴OC∥l,
    ∴,
    ∴P2H=·OC=5,
    ∴P2 (,5)
    因此P点的坐标为(,2)或(,5).
    (3)存在.
    假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.
    如图3,

    当平行四边形是平行四边形时,M(,),(,),
    当平行四边形AONM是平行四边形时,M(,),N(,),
    如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(,m),则

    ∵点N在抛物线上,
    ∴-m=-·(-+1)( --4)=-,
    ∴m=,
    此时M(,), N(-,-).
    综上所述,M(,),N(,)或M(,),N(,) 或 M(,), N(-,-).
    点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.
    21、(1);(2);(3).
    【解析】
    (1)将点代入二次函数解析式即可;
    (2)过点作轴,证明即可得到即可得出点 A,B 的坐标;
    (3)设点的坐标为,解方程得出四边形为平行四边形,求出AC,AB的值,通过扫过区域的面积=代入计算即可.
    【详解】
    解:(1)∵点在二次函数的图象上,

    解方程,得
    ∴二次函数的表达式为.
    (2)如图1,过点作轴,垂足为.






    在和中,
    ∵,

    ∵点的坐标为 ,


    (3)如图2,把沿轴正方向平移,

    当点落在抛物线上点处时,设点的坐标为.
    解方程得:(舍去)或
    由平移的性质知,且,
    ∴四边形为平行四边形,


    扫过区域的面积== .
    【点睛】
    本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.
    22、(1)45;(m,﹣m);(2)相似;(3)①;②.
    【解析】
    试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A′坐标;
    (2)△D′OE∽△ABC.表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;
    (3)①当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;
    ②抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围.
    试题解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为45;m,﹣m;
    (2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为,∵抛物线过点E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;
    (3)①当点E与点O重合时,E(0,0),∵抛物线过点E,A,∴,整理得:,即;
    ②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;
    若抛物线过点A(2m,2m),则,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为.
    考点:1.二次函数综合题;2.压轴题;3.探究型;4.最值问题.
    23、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2
    【解析】
    试题分析:(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;
    (2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;
    (3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.
    试题解析:(1)∵B(2,﹣4)在y=上,
    ∴m=﹣1.
    ∴反比例函数的解析式为y=﹣.
    ∵点A(﹣4,n)在y=﹣上,
    ∴n=2.
    ∴A(﹣4,2).
    ∵y=kx+b经过A(﹣4,2),B(2,﹣4),
    ∴,
    解之得.
    ∴一次函数的解析式为y=﹣x﹣2.
    (2)∵C是直线AB与x轴的交点,
    ∴当y=0时,x=﹣2.
    ∴点C(﹣2,0).
    ∴OC=2.
    ∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.
    (3)不等式的解集为:﹣4<x<0或x>2.
    24、证明见解析.
    【解析】
    由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.
    【详解】
    解:∵AD∥BC
    ∴∠ADB=∠DBC
    ∵DC⊥BC于点C,AE⊥BD于点E
    ∴∠C=∠AED=90°
    又∵DB=DA
    ∴△AED≌△DCB(AAS)
    ∴AE=CD
    【点睛】
    本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.

    相关试卷

    2022届湖南省长沙市长铁一中十校联考最后数学试题含解析: 这是一份2022届湖南省长沙市长铁一中十校联考最后数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中是无理数的是,如图,将△ABC绕点C,在一组数据等内容,欢迎下载使用。

    2021-2022学年湖南省邵阳县重点名校十校联考最后数学试题含解析: 这是一份2021-2022学年湖南省邵阳县重点名校十校联考最后数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,定义运算“※”为,|﹣3|的值是等内容,欢迎下载使用。

    2021-2022学年湖南省长沙市明德华兴中学十校联考最后数学试题含解析: 这是一份2021-2022学年湖南省长沙市明德华兴中学十校联考最后数学试题含解析,共22页。试卷主要包含了已知抛物线y=ax2+bx+c等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map