搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年湖南省怀化中学方县中考数学四模试卷含解析

    2021-2022学年湖南省怀化中学方县中考数学四模试卷含解析第1页
    2021-2022学年湖南省怀化中学方县中考数学四模试卷含解析第2页
    2021-2022学年湖南省怀化中学方县中考数学四模试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南省怀化中学方县中考数学四模试卷含解析

    展开

    这是一份2021-2022学年湖南省怀化中学方县中考数学四模试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD.则∠BDE的度数为( )

    A.76° B.74° C.72° D.70°
    2.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是(  )

    A.①③ B.②③ C.③④ D.②④
    3.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )

    A.1 B.2 C.3 D.4
    4.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是(  )

    A. B.
    C. D.
    5.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是(  )

    A.60° B.50° C.40° D.30°
    6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
    ①甲步行的速度为60米/分;
    ②乙走完全程用了32分钟;
    ③乙用16分钟追上甲;
    ④乙到达终点时,甲离终点还有300米
    其中正确的结论有(  )

    A.1个 B.2个 C.3个 D.4个
    7.如图所示,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )

    A.2 B. C. D.
    8.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )
    A. B. C. D.
    9.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是

    A.甲 B.乙
    C.丙 D.丁
    10.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有(  )

    A.1个 B.2个 C.3个 D.4个
    11.=(  )
    A.±4 B.4 C.±2 D.2
    12.的算术平方根为( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第_____象限.
    14.举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为 0,甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):

    如果你是教练,要选派一名选手参加国际比赛,那么你会选择_____(填“甲” 或“乙”),理由是___________.
    15.如图△ABC中,AB=AC=8,∠BAC=30°,现将△ABC绕点A逆时针旋转30°得到△ACD,延长AD、BC交于点E,则DE的长是_____.

    16.分式有意义时,x的取值范围是_____.
    17.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 ________元。
    18.若圆锥的地面半径为,侧面积为,则圆锥的母线是__________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
    20.(6分)如图,在梯形中,,,,,点为边上一动点,作⊥,垂足在边上,以点为圆心,为半径画圆,交射线于点.
    (1)当圆过点时,求圆的半径;
    (2)分别联结和,当时,以点为圆心,为半径的圆与圆相交,试求圆的半径的取值范围;
    (3)将劣弧沿直线翻折交于点,试通过计算说明线段和的比值为定值,并求出次定值.

    21.(6分)吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是   .列表:
    x

    ﹣2
    ﹣1
    0
    1
    2
    3
    4
    5
    6

    y


    m
    ﹣1

    ﹣5
    n
    ﹣1



    表中m=   ,n=   .描点、连线
    在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:
    观察所画出的函数图象,写出该函数的两条性质:
    ①   ;
    ②   .
    22.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
    被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
    23.(8分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.

    (1)按如下分数段整理、描述这两组数据:
    成绩x
    学生
    70≤x≤74
    75≤x≤79
    80≤x≤84
    85≤x≤89
    90≤x≤94
    95≤x≤100

    ______
    ______
    ______
    ______
    ______
    ______

    1
    1
    4
    2
    1
    1
    (2)两组数据的极差、平均数、中位数、众数、方差如下表所示:
    学生
    极差
    平均数
    中位数
    众数
    方差

    ______
    83.7
    ______
    86
    13.21

    24
    83.7
    82
    ______
    46.21
    (3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.
    24.(10分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.
    (1)求证:四边形BEDF是平行四边形;
    (2)请添加一个条件使四边形BEDF为菱形.

    25.(10分)某农场用2台大收割机和5台小收割机同时工作2小时共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割小麦8公顷.1台大收割机和1台小收割机每小时各收割小麦多少公顷?
    26.(12分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
    (1)求证:FH=ED;
    (2)当AE为何值时,△AEF的面积最大?

    27.(12分)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

    (1)求证:DE⊥AG;
    (1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.
    ①在旋转过程中,当∠OAG′是直角时,求α的度数;
    ②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.
    【详解】
    解:∵∠A=56°,∠C=88°,
    ∴∠ABC=180°-56°-88°=36°,
    ∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,
    ∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
    ∴∠BDE=180°-18°-88°=74°.
    故选:B.
    【点睛】
    此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.
    2、D
    【解析】
    ①错误.由题意a>1.b>1,c<1,abc<1;
    ②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;
    ③错误.抛物线与x轴的另一个交点是(1,1);
    ④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    【详解】
    解:∵抛物线开口向上,∴a>1,
    ∵抛物线交y轴于负半轴,∴c<1,
    ∵对称轴在y轴左边,∴- <1,
    ∴b>1,
    ∴abc<1,故①错误.
    ∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,
    当ax2+bx+c<mx+n时,-3<x<-1;
    即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,
    抛物线与x轴的另一个交点是(1,1),故③错误,
    ∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,
    ∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    故选:D.
    【点睛】
    本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.
    3、C
    【解析】
    ∵∠ACD=∠B,∠A=∠A,
    ∴△ACD∽△ABC,
    ∴,
    ∴,
    ∴,
    ∴S△ABC=4,
    ∴S△BCD= S△ABC- S△ACD=4-1=1.
    故选C
    考点:相似三角形的判定与性质.
    4、B
    【解析】
    找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
    【详解】
    解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.
    故选:B.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
    5、D
    【解析】
    由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.
    【详解】
    解:在△DEF中,∠1=60°,∠DEF=90°,
    ∴∠D=180°-∠DEF-∠1=30°.
    ∵AB∥CD,
    ∴∠2=∠D=30°.
    故选D.
    【点睛】
    本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.
    6、A
    【解析】
    【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】由图可得,
    甲步行的速度为:240÷4=60米/分,故①正确,
    乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,
    乙追上甲用的时间为:16﹣4=12(分钟),故③错误,
    乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,
    故选A.
    【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.
    7、C
    【解析】
    解:连接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故选C.

    点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系.题目整体较为简单,适合随堂训练.
    8、D
    【解析】
    试题分析:列表如下




    白1

    白2



    (黑,黑)

    (白1,黑)

    (白2,黑)

    白1

    (黑,白1)

    (白1,白1)

    (白2,白1)

    白2

    (黑,白2)

    (白1,白2)

    (白2,白2)

    由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.
    考点:用列表法求概率.
    9、D
    【解析】
    解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁.故选D.
    10、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.
    故选:C.
    【点睛】
    掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
    11、B
    【解析】
    表示16的算术平方根,为正数,再根据二次根式的性质化简.
    【详解】
    解:,
    故选B.
    【点睛】
    本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.
    12、B
    【解析】
    分析:先求得的值,再继续求所求数的算术平方根即可.
    详解:∵=2,
    而2的算术平方根是,
    ∴的算术平方根是,
    故选B.
    点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、一
    【解析】
    ∵一元二次方程x2-2x-m=0无实数根,
    ∴△=4+4m<0,解得m<-1,
    ∴m+1<0,m-1<0,
    ∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.
    故答案是:一.
    14、乙 乙的比赛成绩比较稳定.
    【解析】
    观察表格中的数据可知:甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定;乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定,据此可得结论.
    【详解】
    观察表格中的数据可得,甲的比赛成绩波动幅度较大,故甲的比赛成绩不稳定; 乙的比赛成绩波动幅度较小,故乙的比赛成绩比较稳定;
    所以要选派一名选手参加国际比赛,应该选择乙,理由是乙的比赛成绩比较稳定.
    故答案为乙,乙的比赛成绩比较稳定.
    【点睛】
    本题主要考查了方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    15、
    【解析】
    过点作于,根据三角形的性质及三角形内角和定理可计算
    再由旋转可得,,根据三角形外角和性质计算,根据含角的直角三角形的三边关系得和的长度,进而得到的长度,然后利用得到与的长度,于是可得.
    【详解】
    如图,过点作于,
    ∵,
    ∴.
    ∵将绕点逆时针旋转,使点落在点处,此时点落在点处,



    在中,∵

    ∴,
    在中,∵,
    ∴,
    ∴.
    故答案为.
    【点睛】
    本题考查三角形性质的综合应用,要熟练掌握等腰三角形的性质,含角的直角三角形的三边关系,旋转图形的性质.
    16、x<1
    【解析】
    要使代数式有意义时,必有1﹣x>2,可解得x的范围.
    【详解】
    根据题意得:1﹣x>2,
    解得:x<1.
    故答案为x<1.
    【点睛】
    考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.
    17、500
    【解析】
    设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.
    【详解】
    解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.
    故答案为:500.
    【点睛】
    本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.
    18、13
    【解析】
    试题解析:圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.
    设母线长为R,则:
    解得:
    故答案为13.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.
    【解析】
    试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;
    (3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;
    (3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.
    试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.
    答:一次至少买1只,才能以最低价购买;
    (3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;
    综上所述:;
    (3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.
    ②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.
    且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.
    即出现了卖46只赚的钱比卖1只赚的钱多的现象.
    当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.
    考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.
    20、(1)x=1 (2) (1)
    【解析】
    (1)作AM⊥BC、连接AP,由等腰梯形性质知BM=4、AM=1,据此知tanB=tanC= ,从而可设PH=1k,则CH=4k、PC=5k,再表示出PA的长,根据PA=PH建立关于k的方程,解之可得;
    (2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9−8k,由△ABE∽△CEH得 ,据此求得k的值,从而得出圆P的半径,再根据两圆间的位置关系求解可得;
    (1)在圆P上取点F关于EH的对称点G,连接EG,作PQ⊥EG、HN⊥BC,先证△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC= 、cosC= ,据此得出NC= k、HN=k及PN=PC−NC=k,继而表示出EF、EH的长,从而出答案.
    【详解】
    (1)作AM⊥BC于点M,连接AP,如图1,

    ∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,
    ∴BM=4、AM=1,
    ∴tanB=tanC=,
    ∵PH⊥DC,
    ∴设PH=1k,则CH=4k、PC=5k,
    ∵BC=9,
    ∴PM=BC−BM−PC=5−5k,
    ∴AP=AM+PM=9+(5−5k) ,
    ∵PA=PH,
    ∴9+(5−5k) =9k,
    解得:k=1或k=,
    当k= 时,CP=5k= >9,舍去;
    ∴k=1,
    则圆P的半径为1.
    (2)如图2,

    由(1)知,PH=PE=1k、CH=4k、PC=5k,
    ∵BC=9,
    ∴BE=BC−PE−PC=9−8k,
    ∵△ABE∽△CEH,
    ∴ ,即 ,
    解得:k= ,
    则PH= ,即圆P的半径为,
    ∵圆B与圆P相交,且BE=9−8k= ,

    相关试卷

    湖南省怀化中学方县2022年中考适应性考试数学试题含解析:

    这是一份湖南省怀化中学方县2022年中考适应性考试数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的有个,下列运算正确的是,下列计算正确的是等内容,欢迎下载使用。

    湖南省怀化市中学方县重点中学2022年中考数学模试卷含解析:

    这是一份湖南省怀化市中学方县重点中学2022年中考数学模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,式子有意义的x的取值范围是,如图所示,在平面直角坐标系中A,不等式组的解在数轴上表示为等内容,欢迎下载使用。

    湖南省怀化市中学方县重点中学2022年中考考前最后一卷数学试卷含解析:

    这是一份湖南省怀化市中学方县重点中学2022年中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了实数 的相反数是,下列几何体中三视图完全相同的是,下列计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map