2021-2022学年湖南省株洲市醴陵市达标名校中考适应性考试数学试题含解析
展开这是一份2021-2022学年湖南省株洲市醴陵市达标名校中考适应性考试数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,的一个有理化因式是,2cs 30°的值等于等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( )
A.3.5 B.4 C.7 D.14
2.一个多边形的每个内角都等于120°,则这个多边形的边数为( )
A.4 B.5 C.6 D.7
3.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )
A.30° B.45°
C.90° D.135°
4.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是 ( )
A. B. C. D.
5.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为
A. B.
C. D.
6.一组数据8,3,8,6,7,8,7的众数和中位数分别是( )
A.8,6 B.7,6 C.7,8 D.8,7
7.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是( )
A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠0
8.的一个有理化因式是( )
A. B. C. D.
9.2cos 30°的值等于( )
A.1 B. C. D.2
10.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积( )
A.65π B.90π C.25π D.85π
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为_______.
12.若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是_________.(写出一个即可)
13.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是________.
14.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__.
15.若反比例函数的图象位于第二、四象限,则的取值范围是__.
16.若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_________.
三、解答题(共8题,共72分)
17.(8分)如图,海中有一个小岛 A,该岛四周 11 海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:≈1.41,≈1.73)
18.(8分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m= .半圆D与数轴有两个公共点,设另一个公共点是C.
①直接写出m的取值范围是 .
②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.
19.(8分)如图,直线与第一象限的一支双曲线交于A、B两点,A在B的左边.
(1)若=4,B(3,1),求直线及双曲线的解析式:并直接写出不等式的解集;
(2)若A(1,3),第三象限的双曲线上有一点C,接AC、BC,设直线BC解析式为;当AC⊥AB时,求证:k为定值.
20.(8分)(1)计算:﹣22+|﹣4|+()-1+2tan60°
(2) 求 不 等 式 组的 解 集 .
21.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)
(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.
22.(10分)计算:﹣3tan30°.
23.(12分)一次函数的图象经过点和点,求一次函数的解析式.
24.如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.
(1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)
(2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.
【详解】
解:∵菱形ABCD的周长为28,
∴AB=28÷4=7,OB=OD,
∵E为AD边中点,
∴OE是△ABD的中位线,
∴OE=AB=×7=3.1.
故选:A.
【点睛】
本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.
2、C
【解析】
试题解析:∵多边形的每一个内角都等于120°,
∴多边形的每一个外角都等于180°-120°=10°,
∴边数n=310°÷10°=1.
故选C.
考点:多边形内角与外角.
3、C
【解析】
根据勾股定理求解.
【详解】
设小方格的边长为1,得,
OC=
,AO=
,AC=4,
∵OC2+AO2==16,
AC2=42=16,
∴△AOC是直角三角形,
∴∠AOC=90°.
故选C.
【点睛】
考点:勾股定理逆定理.
4、A
【解析】
根据菱形的判定方法一一判定即可
【详解】
作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意
B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意
C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意
D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意
故选A
【点睛】
本题考查平行四边形的判定,能理解每个图的作法是本题解题关键
5、A
【解析】
根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.
【详解】
设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
根据题意列方程为:.
故选:.
【点睛】
本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
6、D
【解析】
试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,
8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7
考点:(1)众数;(2)中位数.
7、C
【解析】
根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.
【详解】
解:∵抛物线和轴有交点,
,
解得:且.
故选.
【点睛】
本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.
8、B
【解析】
找出原式的一个有理化因式即可.
【详解】
的一个有理化因式是,
故选B.
【点睛】
此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.
9、C
【解析】
分析:根据30°角的三角函数值代入计算即可.
详解:2cos30°=2×=.
故选C.
点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键.
10、B
【解析】
根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可.
【详解】
由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,
所以圆锥的母线长==13,
所以圆锥的表面积=π×52+×2π×5×13=90π.
故选B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
如图,作OH⊥CD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在Rt△OPH中,根据含30°的直角三角形的性质计算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理计算得到CH=,即CD=2CH=2.
【详解】
解:如图,作OH⊥CD于H,连结OC,
∵OH⊥CD,
∴HC=HD,
∵AP=2,BP=6,
∴AB=8,
∴OA=4,
∴OP=OA﹣AP=2,
在Rt△OPH中,
∵∠OPH=30°,
∴∠POH=60°,
∴OH=OP=1,
在Rt△OHC中,
∵OC=4,OH=1,
∴CH=,
∴CD=2CH=2.
故答案为2.
【点睛】
本题主要考查了圆的垂径定理,勾股定理和含30°角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可
12、-1
【解析】
试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k<1,b<1,随便写出一个小于1的b值即可.∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限, ∴k<1,b<1.
考点:一次函数图象与系数的关系
13、b<9
【解析】
由方程有两个不相等的实数根结合根的判别式,可得出,解之即可得出实数b的取值范围.
【详解】
解:方程有两个不相等的实数根,
,
解得:.
【点睛】
本题考查的知识点是根的判别式,解题关键是牢记“当时,方程有两个不相等的实数根”.
14、.
【解析】
作DH⊥AE于H, 根据勾股定理求出AB, 根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积,利用扇形面积公式计算即可.
【详解】
解:如图
作DH⊥AE于H,
AOB=, OA=2, OB=1,AB=,
由旋转的性质可知
OE=OB=1,DE=EF=AB=,
可得△DHE≌△BOA,
DH=OB=1,
阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积-扇形DEF的面积
==,
故答案:.
【点睛】
本题主要考查扇形的计算公式,正确表示出阴影部分的面积是计算的关键.
15、k>1
【解析】
根据图象在第二、四象限,利用反比例函数的性质可以确定1-k的符号,即可解答.
【详解】
∵反比例函数y=的图象在第二、四象限,
∴1-k<0,
∴k>1.
故答案为:k>1.
【点睛】
此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.
16、
【解析】
分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题.
详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:
(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、
(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、
(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、
(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、
(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:.故答案为.
点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.
三、解答题(共8题,共72分)
17、不会有触礁的危险,理由见解析.
【解析】
分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据可得关于x的方程,解之可得.
详解:过点A作AH⊥BC,垂足为点H.
由题意,得∠BAH=60°,∠CAH=45°,BC=1.
设AH=x,则CH=x.
在Rt△ABH中,∵,
解得:.
∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.
点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
18、(1);(2)①;②△AOB与半圆D的公共部分的面积为;(3)tan∠AOB的值为或.
【解析】
(1)根据题意由勾股定理即可解答
(2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可
②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答
(3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
【详解】
(1)当半圆与数轴相切时,AB⊥OB,
由勾股定理得m= ,
故答案为 .
(2)①∵半圆D与数轴相切时,只有一个公共点,此时m=,
当O、A、B三点在数轴上时,m=7+4=11,
∴半圆D与数轴有两个公共点时,m的取值范围为.
故答案为.
②如图,连接DC,当BC=2时,
∵BC=CD=BD=2,
∴△BCD为等边三角形,
∴∠BDC=60°,
∴∠ADC=120°,
∴扇形ADC的面积为 ,
,
∴△AOB与半圆D的公共部分的面积为 ;
(3)如图1,
当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4+x)2=42﹣x2,
解得x= ,OH= ,AH= ,
∴tan∠AOB=,
如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,
设BH=x,则72﹣(4﹣x)2=42﹣x2,
解得x= ,OH=,AH=,
∴tan∠AOB=.
综合以上,可得tan∠AOB的值为或.
【点睛】
此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线
19、 (1) 1<x<3或x<0;(2)证明见解析.
【解析】
(1)将B(3,1)代入,将B(3,1)代入,即可求出解析式;
再根据图像直接写出不等式的解集;(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H, △AGC∽△BHA, 设B(m, )、C(n, ),根据对应线段成比例即可得出mn=-9,联立,得,根据根与系数的关系得,由此得出为定值.
【详解】
解:(1)将B(3,1)代入,
∴m=3, ,
将B(3,1)代入,
∴,,
∴,
∴不等式的解集为1<x<3或x<0
(2)过A作l∥x轴,过C作CG⊥l于G,过B作BH⊥l于H,
则△AGC∽△BHA,
设B(m, )、C(n, ),
∵,
∴,
∴,
∴ ,
∴mn=-9,
联立∴,
∴
∴,
∴为定值.
【点睛】
此题主要考查反比例函数的图像与性质,解题的关键是根据题意作出辅助线,再根据反比例函数的性质进行求解.
20、(1)1;(2)-1≤x<1.
【解析】
试题分析:(1)、首先根据绝对值、幂、三角函数的计算法则得出各式的值,然后进行求和得出答案;(2)、分半求出每个不等式的解,然后得出不等式组的解.
试题解析:解:(1)、
(2)、 由得:x<1,由得:x≥-1,∴不等式的解集:-1≤x<1.
21、(1)作图见解析;(2)作图见解析;(3)P(,0).
【解析】
(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.
【详解】
解:(1)如图所示,△A1B1C1为所求做的三角形;
(2)如图所示,△A2B2O为所求做的三角形;
(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),
∴A2A3所在直线的解析式为:y=﹣5x+16,
令y=0,则x=,
∴P点的坐标(,0).
考点:平移变换;旋转变换;轴对称-最短路线问题.
22、1.
【解析】
直接利用零指数幂的性质、绝对值的性质和负整数指数幂的性质及特殊角三角函数值分别化简得出答案.
【详解】
﹣3tan30°
=4+﹣1﹣1﹣3×
=1.
【点睛】
此题主要考查了实数运算及特殊角三角函数值,正确化简各数是解题关键.
23、y=2x+1.
【解析】
直接把点A(﹣1,1),B(1,5)代入一次函数y=kx+b(k≠0),求出k、b的值即可.
【详解】
∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得:.
故一次函数的解析式为y=2x+1.
【点睛】
本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.
24、(1)见解析;(2)
【解析】
(1)根据题意作出图形即可;
(2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD==2,根据三角函数的定义即可得到结论.
【详解】
(1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,
则直线PQ即为所求;
(2)由(1)知,PD=PD′,
∵PD′⊥PD,
∴∠DPD′=90°,
∵∠A=90°,
∴∠ADP+∠APD=∠APD+∠BPD′=90°,
∴∠ADP=∠BPD′,
在△ADP与△BPD′中,,
∴△ADP≌△BPD′,
∴AD=PB=4,AP= BD′
∵PB=AB﹣AP=6﹣AP=4,
∴AP=2;
∴PD==2,BD′=2
∴CD′=BC- BD′=4-2=2
∵PD=PD′,PD⊥PD′,
∵DD′=PD=2,
∵PQ垂直平分DD′,连接Q D′
则DQ= D′Q
∴∠QD′D=∠QDD′
∴sin∠QD′D=sin∠QDD′=.
【点睛】
本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.
相关试卷
这是一份福建省部分市县达标名校2021-2022学年中考适应性考试数学试题含解析,共19页。试卷主要包含了的倒数是,下列计算正确的是等内容,欢迎下载使用。
这是一份2022年湖南省醴陵市中考适应性考试数学试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2022届湖南省株洲市攸县中考适应性考试数学试题含解析,共23页。试卷主要包含了如图,O为原点,点A的坐标为等内容,欢迎下载使用。