|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年江苏省海门六校联考中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省海门六校联考中考数学最后冲刺模拟试卷含解析01
    2021-2022学年江苏省海门六校联考中考数学最后冲刺模拟试卷含解析02
    2021-2022学年江苏省海门六校联考中考数学最后冲刺模拟试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省海门六校联考中考数学最后冲刺模拟试卷含解析

    展开
    这是一份2021-2022学年江苏省海门六校联考中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了如图等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为(  )

    A.1 B.3 C.﹣1 D.2019
    2.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的(  )
    A.中位数 B.众数 C.平均数 D.方差
    3.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )

    A. B. C. D.
    4.如图,平行四边形ABCD中,点A在反比例函数y=(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是(  )

    A.﹣10 B.﹣5 C.5 D.10
    5.若关于的方程的两根互为倒数,则的值为(  )
    A. B.1 C.-1 D.0
    6.如图: 在中,平分,平分,且交于,若,则等于( )

    A.75 B.100 C.120 D.125
    7.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是  
    A. B. C. D.
    8.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积(  )

    A.11 B.10 C.9 D.16
    9.一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有( )

    A.0个 B.1个 C.2个 D.3个
    10.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有(  )

    A.1个 B.2个 C.3个 D.4个
    11.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有(  )

    A.1对 B.2对 C.3对 D.4对
    12.下列计算正确的是(  )
    A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2
    C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.某一时刻,测得一根高1.5m的竹竿在阳光下的影长为2.5m.同时测得旗杆在阳光下的影长为30m,则旗杆的高为__________m.
    14.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.

    15.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.

    16.若一组数据1,2,3,的平均数是2,则的值为______.
    17.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB, 垂足为点F,则EF的长是__________.

    18.计算两个两位数的积,这两个数的十位上的数字相同,个位上的数字之和等于1.
    53×57=3021,38×32=1216,84×86=7224,71×79=2.
    (1)你发现上面每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的 ,请写出一个符合上述规律的算式 .
    (2)设其中一个数的十位数字为a,个位数字为b,请用含a,b的算式表示这个规律.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E。当点F运动到边BC的中点时,求点E的坐标;连接EF,求∠EFC的正切值;如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.

    20.(6分)小明对,,,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表
    超市




    女工人数占比
    62.5%
    62.5%
    50%
    75%
    超市共有员工多少人?超市有女工多少人?若从这些女工中随机选出一个,求正好是超市的概率;现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.
    21.(6分)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°= ,cos37°= ,tan37°= ) 
    (1)求把手端点A到BD的距离; 
    (2)求CH的长. 

    22.(8分)如图,抛物线与x轴交于点A,B,与轴交于点C,过点C作CD∥x轴,交抛物线的对称轴于点D,连结BD,已知点A坐标为(-1,0).
    求该抛物线的解析式;求梯形COBD的面积.
    23.(8分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
    品名
    猕猴桃
    芒果
    批发价元千克
    20
    40
    零售价元千克
    26
    50
    他购进的猕猴桃和芒果各多少千克?
    如果猕猴桃和芒果全部卖完,他能赚多少钱?
    24.(10分)某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
    种类
    A
    B
    C
    D
    E
    F
    上学方式
    电动车
    私家车
    公共交通
    自行车
    步行
    其他
    某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图

    根据以上信息,回答下列问题:参与本次问卷调查的学生共有____人,其中选择B类的人数有____人.在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.
    25.(10分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
    (1)∠CAD=______度;
    (2)求∠CDF的度数;
    (3)用等式表示线段CD和CE之间的数量关系,并证明.

    26.(12分)反比例函数的图象经过点A(2,3).
    (1)求这个函数的解析式;
    (2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.
    27.(12分)解方程式:- 3 =



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据各点横坐标数据得出规律,进而得出x +x +…+x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.
    【详解】
    解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;
    ∴x1+x2+…+x7=﹣1
    ∵x1+x2+x3+x4=1﹣1﹣1+3=2;
    x5+x6+x7+x8=3﹣3﹣3+5=2;

    x97+x98+x99+x100=2…
    ∴x1+x2+…+x2016=2×(2016÷4)=1.
    而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,
    ∴x2017+x2018+x2019=﹣1009,
    ∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,
    故选C.
    【点睛】
    此题主要考查规律型:点的坐标,解题关键在于找到其规律
    2、A
    【解析】
    7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,
    故选A.
    【点睛】
    本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.
    3、B
    【解析】
    根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
    【详解】
    连接BD,

    ∵四边形ABCD是菱形,∠A=60°,
    ∴∠ADC=120°,
    ∴∠1=∠2=60°,
    ∴△DAB是等边三角形,
    ∵AB=2,
    ∴△ABD的高为,
    ∵扇形BEF的半径为2,圆心角为60°,
    ∴∠4+∠5=60°,∠3+∠5=60°,
    ∴∠3=∠4,
    设AD、BE相交于点G,设BF、DC相交于点H,
    在△ABG和△DBH中,

    ∴△ABG≌△DBH(ASA),
    ∴四边形GBHD的面积等于△ABD的面积,
    ∴图中阴影部分的面积是:S扇形EBF-S△ABD=
    =.
    故选B.
    4、A
    【解析】
    作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.
    【详解】
    作AE⊥BC于E,如图,

    ∵四边形ABCD为平行四边形,
    ∴AD∥x轴,
    ∴四边形ADOE为矩形,
    ∴S平行四边形ABCD=S矩形ADOE,
    而S矩形ADOE=|−k|,
    ∴|−k|=1,
    ∵k<0,
    ∴k=−1.
    故选A.
    【点睛】
    本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
    5、C
    【解析】
    根据已知和根与系数的关系得出k2=1,求出k的值,再根据原方程有两个实数根,即可求出符合题意的k的值.
    【详解】
    解:设、是的两根,
    由题意得:,
    由根与系数的关系得:,
    ∴k2=1,
    解得k=1或−1,
    ∵方程有两个实数根,
    则,
    当k=1时,,
    ∴k=1不合题意,故舍去,
    当k=−1时,,符合题意,
    ∴k=−1,
    故答案为:−1.
    【点睛】
    本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.
    6、B
    【解析】
    根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.
    【详解】
    解:∵CE平分∠ACB,CF平分∠ACD,
    ∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
    ∴△EFC为直角三角形,
    又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
    ∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
    ∴CM=EM=MF=5,EF=10,
    由勾股定理可知CE2+CF2=EF2=1.
    故选:B.
    【点睛】
    本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.
    7、D
    【解析】
    本题主要考查二次函数的解析式
    【详解】
    解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.
    故选D.
    【点睛】
    本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.
    8、B
    【解析】
    根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.
    【详解】
    如图,∵四边形ABCD是矩形,
    ∴AD=BC,∠D=∠B=90°,
    根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,
    ∴HC=BC,∠H=∠B,
    又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,
    ∴∠HCE=∠BCF,
    在△EHC和△FBC中,
    ∵,
    ∴△EHC≌△FBC,
    ∴BF=HE,
    ∴BF=HE=DE,
    设BF=EH=DE=x,
    则AF=CF=9﹣x,
    在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,
    解得:x=4,即DE=EH=BF=4,
    则AG=DE=EH=BF=4,
    ∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,
    ∴EF2=EG2+GF2=32+12=10,
    故选B.

    【点睛】
    本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.
    9、B
    【解析】
    仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.
    【详解】
    ①∵y1=kx+b的图象从左向右呈下降趋势,
    ∴k<0正确;
    ②∵y2=x+a,与y轴的交点在负半轴上,
    ∴a<0,故②错误;
    ③当x<3时,y1>y2错误;
    故正确的判断是①.
    故选B.
    【点睛】
    本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
    10、C
    【解析】
    根据轴对称图形与中心对称图形的概念判断即可.
    【详解】
    第一个图形不是轴对称图形,是中心对称图形;
    第二、三、四个图形是轴对称图形,也是中心对称图形;
    故选:C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    11、C
    【解析】
    ∵∠ACB=90°,CD⊥AB,
    ∴△ABC∽△ACD,
    △ACD∽CBD,
    △ABC∽CBD,
    所以有三对相似三角形.
    故选C.
    12、D
    【解析】
    A、原式=a2﹣4,不符合题意;
    B、原式=a2﹣a﹣2,不符合题意;
    C、原式=a2+b2+2ab,不符合题意;
    D、原式=a2﹣2ab+b2,符合题意,
    故选D

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1.
    【解析】
    分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.
    详解:∵==,解得:旗杆的高度=×30=1.
    故答案为1.
    点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.
    14、
    【解析】
    由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.
    【详解】
    详解:∵正方形ABCD,
    ∴∠B=90°.
    ∵AB=12,BM=5,
    ∴AM=1.
    ∵ME⊥AM,
    ∴∠AME=90°=∠B.
    ∵∠BAE=90°,
    ∴∠BAM+∠MAE=∠MAE+∠E,
    ∴∠BAM=∠E,
    ∴△ABM∽△EMA,
    ∴=,即=,
    ∴AE=,
    ∴DE=AE﹣AD=﹣12=.
    故答案为.
    【点睛】
    本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.
    15、4
    【解析】
    试题解析:∵ 可
    ∴设DC=3x,BD=5x,
    又∵MN是线段AB的垂直平分线,
    ∴AD=DB=5x,
    又∵AC=8cm,
    ∴3x+5x=8,
    解得,x=1,
    在Rt△BDC中,CD=3cm,DB=5cm,

    故答案为:4cm.
    16、1
    【解析】
    根据这组数据的平均数是1和平均数的计算公式列式计算即可.
    【详解】
    ∵数据1,1,3,的平均数是1,
    ∴,
    解得:.
    故答案为:1.
    【点睛】
    本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.
    17、2
    【解析】
    设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.
    【详解】
    设EF=x,
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
    ∴BD=AB=4+4,EF=BF=x,
    ∴BE=x,
    ∵∠BAE=22.5°,
    ∴∠DAE=90°-22.5°=67.5°,
    ∴∠AED=180°-45°-67.5°=67.5°,
    ∴∠AED=∠DAE,
    ∴AD=ED,
    ∴BD=BE+ED=x+4+2=4+4,
    解得:x=2,
    即EF=2.
    18、 (1)十位和个位,44×46=2024;(2) 10a(a+1)+b(1﹣b)
    【解析】分析:(1)、根据题意得出其一般性的规律,从而得出答案;(2)、利用代数式表示出其一般规律得出答案.
    详解:(1)由已知等式知,每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,
    例如:44×46=2024,
    (2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).
    点睛:本题主要考查的是规律的发现与整理,属于基础题型.找出一般性的规律是解决这个问题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)E(2,1);(2);(1).
    【解析】
    (1)先确定出点C坐标,进而得出点F坐标,即可得出结论;
    (2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CE,即可得出结论;
    (1)先判断出△EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.
    【详解】
    (1)∵OA=1,OB=4,
    ∴B(4,0),C(4,1),
    ∵F是BC的中点,
    ∴F(4,),
    ∵F在反比例y=函数图象上,
    ∴k=4×=6,
    ∴反比例函数的解析式为y=,
    ∵E点的坐标为1,
    ∴E(2,1);
    (2)∵F点的横坐标为4,
    ∴F(4,),
    ∴CF=BC﹣BF=1﹣=
    ∵E的纵坐标为1,
    ∴E(,1),
    ∴CE=AC﹣AE=4﹣=,
    在Rt△CEF中,tan∠EFC=,
    (1)如图,由(2)知,CF=,CE=,,
    过点E作EH⊥OB于H,

    ∴EH=OA=1,∠EHG=∠GBF=90°,
    ∴∠EGH+∠HEG=90°,
    由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,
    ∴∠EGH+∠BGF=90°,
    ∴∠HEG=∠BGF,
    ∵∠EHG=∠GBF=90°,
    ∴△EHG∽△GBF,
    ∴,
    ∴,
    ∴BG=,
    在Rt△FBG中,FG2﹣BF2=BG2,
    ∴()2﹣()2=,
    ∴k=,
    ∴反比例函数解析式为y=.
    点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键.
    20、(1)32(人),25(人);(2);(3)乙同学,见解析.
    【解析】
    (1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;
    (2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;
    (3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解.
    【详解】
    解:(1)A超市共有员工:20÷62.5%=32(人),
    ∵360°-80°-100°-120°=60°,
    ∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,
    ∴B超市有女工:20×=25(人);
    (2)C超市有女工:20×=30(人).
    四个超市共有女工:20×=90(人).
    从这些女工中随机选出一个,正好是C超市的概率为=.
    (3)乙同学.
    理由:D超市有女工20×=15(人),共有员工15÷75%=20(人),
    再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为=≠75%.
    【点睛】
    本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    21、(1)12;(2)CH的长度是10cm.
    【解析】
    (1)、过点A作于点N,过点M作于点Q,根据Rt△AMQ中α的三角函数得出得出AN的长度;
    (2)、根据△ANB和△AGC相似得出DN的长度,然后求出BN的长度,最后求出GC的长度,从而得出答案.
    【详解】
    解:(1)、过点A作于点N,过点M作于点Q.

    在中,.
    ∴,
    ∴,
    ∴.
    (2)、根据题意:∥.
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∴.
    ∴.
    答:的长度是10cm .
    点睛:本题考查了相似三角形的应用以及三角函数的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.
    22、(1)(2)
    【解析】
    (1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式.
    (2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,根据梯形面积公式即可求出梯形COBD的面积.
    【详解】
    (1)将A(―1,0)代入中,得:0=4a+4,解得:a=-1.
    ∴该抛物线解析式为.
    (2)对于抛物线解析式,令x=0,得到y=2,即OC=2,
    ∵抛物线的对称轴为直线x=1,∴CD=1.
    ∵A(-1,0),∴B(2,0),即OB=2.
    ∴.
    23、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.
    【解析】
    设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    根据利润销售收入成本,即可求出结论.
    【详解】
    设购进猕猴桃x千克,购进芒果y千克,
    根据题意得:,
    解得:.
    答:购进猕猴桃20千克,购进芒果30千克.
    元.
    答:如果猕猴桃和芒果全部卖完,他能赚420元钱.
    【点睛】
    本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算.
    24、 (1)450、63; ⑵36°,图见解析; (3)2460 人.
    【解析】
    (1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择类的人数所占的百分比,即可求出选择类的人数.
    (2)求出类的百分比,乘以即可求出类对应的扇形圆心角的度数;由总学生数求出选择公共交通的人数,补全统计图即可;
    (3)由总人数乘以“绿色出行”的百分比,即可得到结果.
    【详解】
    (1) 参与本次问卷调查的学生共有:(人);
    选择类的人数有:
    故答案为450、63;
    (2)类所占的百分比为:
    类对应的扇形圆心角的度数为:
    选择类的人数为:(人).
    补全条形统计图为:

    (3) 估计该校每天“绿色出行”的学生人数为3000×(1-14%-4%)=2460 人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    25、(1)45;(2)90°;(3)见解析.
    【解析】
    (1)根据等腰三角形三线合一可得结论;
    (2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;
    (3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.
    【详解】
    (1)解:∵AB=AC,M是BC的中点,
    ∴AM⊥BC,∠BAD=∠CAD,
    ∵∠BAC=90°,
    ∴∠CAD=45°,
    故答案为:45
    (2)解:如图,连接DB.
    ∵AB=AC,∠BAC=90°,M是BC的中点,
    ∴∠BAD=∠CAD=45°.
    ∴△BAD≌△CAD.
    ∴∠DBA=∠DCA,BD=CD.
    ∵CD=DF,
    ∴BD=DF.
    ∴∠DBA=∠DFB=∠DCA.
    ∵∠DFB+∠DFA=180°,
    ∴∠DCA+∠DFA=180°.
    ∴∠BAC+∠CDF=180°.
    ∴∠CDF=90°.
    (3).
    证明:∵∠EAD=90°,
    ∴∠EAF=∠DAF=45°.
    ∵AD=AE,
    ∴△EAF≌△DAF.
    ∴DF=EF.
    由②可知,.
    ∴.


    【点睛】
    此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.
    26、(1)y= (2)点B(1,6)在这个反比例函数的图象上
    【解析】
    (1)设反比例函数的解析式是y=,只需把已知点的坐标代入,即可求得函数解析式;
    (2)根据反比例函数图象上点的坐标特征进行判断.
    【详解】
    设反比例函数的解析式是,
    则,
    得.
    则这个函数的表达式是;
    因为,
    所以点不在函数图象上.
    【点睛】
    本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数图象上点的坐标特征.
    27、x=3
    【解析】
    先去分母,再解方程,然后验根.
    【详解】
    解:去分母,得1-3(x-2)=1-x,1-3x+6=1-x,x=3,经检验,x=3是原方程的根.
    【点睛】
    此题重点考察学生对分式方程解的应用,掌握分式方程的解法是解题的关键.

    相关试卷

    江苏省镇江市五校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省镇江市五校2021-2022学年中考数学最后冲刺模拟试卷含解析,共18页。试卷主要包含了四组数中,下列运算,结果正确的是,实数4的倒数是,若关于x的一元二次方程等内容,欢迎下载使用。

    江苏省扬州市江都区国际校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省扬州市江都区国际校2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了一、单选题,下列运算正确的是等内容,欢迎下载使用。

    江苏省南京市六校联考2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省南京市六校联考2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map