终身会员
搜索
    上传资料 赚现金
    2021-2022学年湖南长沙市开福区达标名校中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    2021-2022学年湖南长沙市开福区达标名校中考数学对点突破模拟试卷含解析01
    2021-2022学年湖南长沙市开福区达标名校中考数学对点突破模拟试卷含解析02
    2021-2022学年湖南长沙市开福区达标名校中考数学对点突破模拟试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南长沙市开福区达标名校中考数学对点突破模拟试卷含解析

    展开
    这是一份2021-2022学年湖南长沙市开福区达标名校中考数学对点突破模拟试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,分式方程的解为,下面调查方式中,合适的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.用配方法解方程x2﹣4x+1=0,配方后所得的方程是( )
    A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣3
    2.如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )

    A. B. C. D.
    3.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )

    A.10,15 B.13,15 C.13,20 D.15,15
    4.下列图形中是轴对称图形但不是中心对称图形的是(  )
    A. B. C. D.
    5.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是(  )

    A. B. C. D.
    6.分式方程的解为( )
    A.x=-2 B.x=-3 C.x=2 D.x=3
    7.下面调查方式中,合适的是(  )
    A.调查你所在班级同学的体重,采用抽样调查方式
    B.调查乌金塘水库的水质情况,采用抽样调査的方式
    C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式
    D.要了解全市初中学生的业余爱好,采用普查的方式
    8.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为(  )

    A.85° B.75° C.60° D.30°
    9.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是(  )
    A. B. C. D.
    10.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为(  )

    A. cm B.cm C.cm D. cm
    11.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )

    A. B. C. D.
    12.将直线y=﹣x+a的图象向右平移2个单位后经过点A(3,3),则a的值为(  )
    A.4 B.﹣4 C.2 D.﹣2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.比较大小:3_________ (填<,>或=).
    14.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.

    15.如图所示,数轴上点A所表示的数为a,则a的值是____.

    16.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.
    17.如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:
    ①;②;③;④不等式的解集是或.
    其中正确结论的序号是__________.

    18.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.
    (1)求证:CD∥AB;
    (2)填空:
    ①当∠DAE=   时,四边形ADFP是菱形;
    ②当∠DAE=   时,四边形BFDP是正方形.

    20.(6分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.
    21.(6分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD的值.

    22.(8分)列方程解应用题:
    某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.
    23.(8分)(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.

    (1)判断CD与⊙O的位置关系,并证明你的结论;
    (2)若E是的中点,⊙O的半径为1,求图中阴影部分的面积.
    24.(10分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)

    25.(10分)已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).

    (1)在,,中,正方形ABCD的“关联点”有_____;
    (2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;
    (3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.
    26.(12分)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.

    (1)求直线的解析式;
    (2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.
    27.(12分)在一个不透明的盒子中,装有3个分别写有数字1,2,3的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.
    (1)用列表法或树状图法写出所有可能出现的结果;
    (2)求两次取出的小球上的数字之和为奇数的概率P.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    方程变形后,配方得到结果,即可做出判断.
    【详解】
    方程,
    变形得:,
    配方得:,即
    故选A.
    【点睛】
    本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.
    2、B
    【解析】
    根据折叠前后对应角相等可知.
    解:设∠ABE=x,
    根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
    所以50°+x+x=90°,
    解得x=20°.
    故选B.
    “点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
    3、D
    【解析】
    将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.
    【详解】
    将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.
    【点睛】
    本题考查中位数和众数的概念,熟记概念即可快速解答.
    4、C
    【解析】
    分析:根据轴对称图形与中心对称图形的概念求解.
    详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;
    B、是轴对称图形,也是中心对称图形,故此选项错误;
    C、是轴对称图形,不是中心对称图形,故此选项正确;
    D、不是轴对称图形,也不是中心对称图形,故此选项错误.
    故选:C.
    点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、C
    【解析】
    分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式.
    详解:假设当∠A=45°时,AD=2,AB=4,则MN=t,当0≤t≤2时,AM=MN=t,则S=,为二次函数;当2≤t≤4时,S=t,为一次函数,故选C.
    点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.
    6、B
    【解析】
    解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.
    7、B
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    【详解】
    A、调查你所在班级同学的体重,采用普查,故A不符合题意;
    B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;
    C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;
    D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;
    故选B.
    【点睛】
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    8、B
    【解析】
    分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
    详解:∵AB∥CD,
    ∴∠C=∠ABC=30°,
    又∵CD=CE,
    ∴∠D=∠CED,
    ∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
    ∴∠D=75°.
    故选B.
    点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.
    9、A
    【解析】
    ∵Rt△ABC中,∠C=90°,sinA=,
    ∴cosA=,
    ∴∠A+∠B=90°,
    ∴sinB=cosA=.
    故选A.
    10、B
    【解析】
    试题解析:∵菱形ABCD的对角线

    根据勾股定理,
    设菱形的高为h,
    则菱形的面积

    解得
    即菱形的高为cm.
    故选B.
    11、A
    【解析】
    分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
    详解:

    由折叠得:∠A=∠A',
    ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
    ∵∠A=α,∠CEA′=β,∠BDA'=γ,
    ∴∠BDA'=γ=α+α+β=2α+β,
    故选A.
    点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
    12、A
    【解析】
    直接根据“左加右减”的原则求出平移后的解析式,然后把A(3,3)代入即可求出a的值.
    【详解】
    由“右加左减”的原则可知,将直线y=-x+b向右平移2个单位所得直线的解析式为:y=-x+b+2,
    把A(3,3)代入,得
    3=-3+b+2,
    解得b=4.
    故选A.
    【点睛】
    本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b, 向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n个单位,是y=kx+b+n, 向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、<
    【解析】
    【分析】根据实数大小比较的方法进行比较即可得答案.
    【详解】∵32=9,9<10,
    ∴3<,
    故答案为:<.
    【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.
    14、
    【解析】
    首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解
    【详解】
    如图,设与AD交于N,EF与AD交于M,

    根据折叠的性质可得:,,,
    四边形ABCD是矩形,
    ,,,



    设,则,
    在中,,


    即,
    ,,,
    ≌,





    由折叠的性质可得:,




    故答案为.
    【点睛】
    本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.
    15、
    【解析】
    根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
    【详解】
    ∵直角三角形的两直角边为1,2,
    ∴斜边长为,
    那么a的值是:﹣.
    故答案为.
    【点睛】
    此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
    16、1.1
    【解析】
    【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论.
    【详解】∵一组数据4,x,1,y,7,9的众数为1,
    ∴x,y中至少有一个是1,
    ∵一组数据4,x,1,y,7,9的平均数为6,
    ∴(4+x+1+y+7+9)=6,
    ∴x+y=11,
    ∴x,y中一个是1,另一个是6,
    ∴这组数为4,1,1,6,7,9,
    ∴这组数据的中位数是×(1+6)=1.1,
    故答案为:1.1.
    【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.
    17、②③④
    【解析】
    分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.
    详解:由图象知,k1<0,k2<0,
    ∴k1k2>0,故①错误;
    把A(-2,m)、B(1,n)代入y=中得-2m=n,
    ∴m+n=0,故②正确;
    把A(-2,m)、B(1,n)代入y=k1x+b得

    ∴,
    ∵-2m=n,
    ∴y=-mx-m,
    ∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,
    ∴P(-1,0),Q(0,-m),
    ∴OP=1,OQ=m,
    ∴S△AOP=m,S△BOQ=m,
    ∴S△AOP=S△BOQ;故③正确;
    由图象知不等式k1x+b>的解集是x<-2或0<x<1,故④正确;
    故答案为:②③④.
    点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.
    18、②③
    【解析】
    试题分析:∠BAD与∠ABC不一定相等,选项①错误;
    ∵GD为圆O的切线,∴∠GDP=∠ABD,又AB为圆O的直径,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,选项②正确;
    由AB是直径,则∠ACQ=90°,如果能说明P是斜边AQ的中点,那么P也就是这个直角三角形外接圆的圆心了.Rt△BQD中,∠BQD=90°-∠6, Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5, 所以∠8=∠7, 所以CP=QP;由②知:∠3=∠5=∠4,则AP=CP; 所以AP=CP=QP,则点P是△ACQ的外心,选项③正确.

    则正确的选项序号有②③.故答案为②③.
    考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)详见解析;(2)①67.5°;②90°.
    【解析】
    (1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
    (2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
    ②根据四边形BFDP是正方形,可以求得∠DAE的度数.
    【详解】
    (1)证明:连接OD,如图所示,

    ∵射线DC切⊙O于点D,
    ∴OD⊥CD,
    即∠ODF=90°,
    ∵∠AED=45°,
    ∴∠AOD=2∠AED=90°,
    ∴∠ODF=∠AOD,
    ∴CD∥AB;
    (2)①连接AF与DP交于点G,如图所示,

    ∵四边形ADFP是菱形,∠AED=45°,OA=OD,
    ∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
    ∴∠AGE=90°,∠DAO=45°,
    ∴∠EAG=45°,∠DAG=∠PEG=22.5°,
    ∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
    故答案为:67.5°;
    ②∵四边形BFDP是正方形,
    ∴BF=FD=DP=PB,
    ∠DPB=∠PBF=∠BFD=∠FDP=90°,
    ∴此时点P与点O重合,
    ∴此时DE是直径,
    ∴∠EAD=90°,
    故答案为:90°.
    【点睛】
    本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
    20、
    【解析】
    分析:按照实数的运算顺序进行运算即可.
    详解:原式


    点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
    21、 (1)见解析;(2).
    【解析】
    (1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;
    (2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=x,求得BD=x,根据勾股定理得到AD=x,于是得到结论.
    【详解】
    解:(1)连接OC,

    ∵OC=OB,
    ∴∠OCB=∠B,
    ∵∠B=∠F,
    ∴∠OCB=∠F,
    ∵D为BC的中点,
    ∴OF⊥BC,
    ∴∠F+∠FCD=90°,
    ∴∠OCB+∠FCD=90°,
    ∴∠OCF=90°,
    ∴CF为⊙O的切线;
    (2)过D作DH⊥AB于H,
    ∵AO=OB,CD=DB,
    ∴OD=AC,
    ∵四边形ACFD是平行四边形,
    ∴DF=AC,
    设OD=x,
    ∴AC=DF=2x,
    ∵∠OCF=90°,CD⊥OF,
    ∴CD2=OD•DF=2x2,
    ∴CD=x,
    ∴BD=x,
    ∴AD=x,
    ∵OD=x,BD=x,
    ∴OB=x,
    ∴DH=x,
    ∴sin∠BAD==.
    【点睛】
    本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.
    22、2.4元/米
    【解析】
    利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.
    【详解】
    解:设去年用水的价格每立方米元,则今年用水价格为每立方米元
    由题意列方程得:
    解得
    经检验,是原方程的解
    (元/立方米)
    答:今年居民用水的价格为每立方米元.
    【点睛】
    此题主要考查了分式方程的应用,正确表示出用水量是解题关键.
    23、解:(1)CD与⊙O相切.理由如下:

    ∵AC为∠DAB的平分线,∴∠DAC=∠BAC.
    ∵OA=OC,∴∠OAC=∠OCA.,∴∠DAC=∠OCA.
    ∴OC∥AD.
    ∵AD⊥CD,∴OC⊥CD.
    ∵OC是⊙O的半径,∴CD与⊙O相切.
    (2)如图,连接EB,由AB为直径,得到∠AEB=90°,
    ∴EB∥CD,F为EB的中点.∴OF为△ABE的中位线.
    ∴OF=AE=,即CF=DE=.
    在Rt△OBF中,根据勾股定理得:EF=FB=DC=.
    ∵E是的中点,∴=,∴AE=EC.∴S弓形AE=S弓形EC.
    ∴S阴影=S△DEC=××=.
    【解析】
    (1)CD与圆O相切,理由为:由AC为角平分线得到一对角相等,再由OA=OC,利用等边对等角得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OC与AD平行,根据AD垂直于CD,得到OC垂直于CD,即可得证.
    (2)根据E为弧AC的中点,得到弧AE=弧EC,利用等弧对等弦得到AE=EC,可得出弓形AE与弓形EC面积相等,阴影部分面积拼接为直角三角形DEC的面积,求出即可.
    考点:角平分线定义,等腰三角形的性质,平行的判定和性质,切线的判定,圆周角定理,三角形中位线定理,勾股定理,扇形面积的计算,转换思想的应用.
    24、
    【解析】
    过点A作,垂足为G,利用三角函数求出CG,从而求出GD,继而求出CD.连接FD并延长与BA的延长线交于点H,利用三角函数求出CH,由图得出EH,再利用三角函数值求出EF.
    【详解】
    过点A作,垂足为G.则,在中,
    ,
    由题意,得,
    ∴,
    连接FD并延长与BA的延长线交于点H. 由题意,得.在中,
    ,
    ∴.
    在中,.
    答:支角钢CD的长为45cm,EF的长为.

    考点:三角函数的应用
    25、(1)正方形ABCD的“关联点”为P2,P3;(2)或;(3).
    【解析】
    (1)正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;
    (2)因为E是正方形ABCD的“关联点”,所以E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),因为E在直线上,推出点E在线段FG上,求出点F、G的横坐标,再根据对称性即可解决问题;
    (3)因为线段MN上的每一个点都是正方形ABCD的“关联点”,分两种情形:①如图3中,MN与小⊙Q相切于点F,求出此时点Q的横坐标;②M如图4中,落在大⊙Q上,求出点Q的横坐标即可解决问题;
    【详解】
    (1)由题意正方形ABCD的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),

    观察图象可知:正方形ABCD的“关联点”为P2,P3;
    (2)作正方形ABCD的内切圆和外接圆,

    ∴OF=1,,.
    ∵E是正方形ABCD的“关联点”,
    ∴E在正方形ABCD的内切圆和外接圆之间(包括两个圆上的点),
    ∵点E在直线上,
    ∴点E在线段FG上.
    分别作FF’⊥x轴,GG’⊥x轴,
    ∵OF=1,,
    ∴,.
    ∴.
    根据对称性,可以得出.
    ∴或.
    (3)∵、N(0,1),
    ∴,ON=1.
    ∴∠OMN=60°.
    ∵线段MN上的每一个点都是正方形ABCD
    的“关联点”,
    ①MN与小⊙Q相切于点F,如图3中,

    ∵QF=1,∠OMN=60°,
    ∴.
    ∵,
    ∴.
    ∴.
    ②M落在大⊙Q上,如图4中,

    ∵,,
    ∴.
    ∴.
    综上:.
    【点睛】
    本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.
    26、(1)直线的解析式为:.(2)平移的时间为5秒.
    【解析】
    (1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.
    (2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.
    在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.
    【详解】
    (1)由题意得,
    ∴点坐标为.
    ∵在中,,

    ∴点的坐标为.
    设直线的解析式为,
    由过、两点,
    得,
    解得,
    ∴直线的解析式为:.
    (2)如图,

    设平移秒后到处与第一次外切于点,
    与轴相切于点,连接,.
    则,
    ∵轴,∴,
    在中,.
    ∵,
    ∴,
    ∴(秒),
    ∴平移的时间为5秒.
    【点睛】
    本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.
    27、 (1见解析;(2).
    【解析】
    (1)根据题意先画出树状图,得出所有可能出现的结果数;
    (2)根据(1)可得共有9种情况,两次取出小球上的数字和为奇数的情况,再根据概率公式即可得出答案.
    【详解】
    (1)列表得,

    (2)两次取出的小球上的数字之和为奇数的共有4种,
    ∴P两次取出的小球上数字之和为奇数的概率P=.
    【点睛】
    此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.

    相关试卷

    湖南长沙市长郡教育集团2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份湖南长沙市长郡教育集团2021-2022学年中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    湖南长沙市开福区2021-2022学年中考数学押题试卷含解析: 这是一份湖南长沙市开福区2021-2022学年中考数学押题试卷含解析,共22页。

    湖南省长沙市开福区市级名校2021-2022学年中考数学模拟预测试卷含解析: 这是一份湖南省长沙市开福区市级名校2021-2022学年中考数学模拟预测试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,已知一次函数y=等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map