2021-2022学年湖南省邵阳县重点名校十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是( )
A. B. C. D.
2.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是
A.55° B.60° C.65° D.70°
3.近似数精确到( )
A.十分位 B.个位 C.十位 D.百位
4.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为( )
A.1 B.2 C.3 D.4
5.以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是( )
A.(1,1) B.(,) C.(1,3) D.(1,)
6.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
A.平均数 B.中位数 C.众数 D.方差
7.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是( )
A. B.
C. D.
8.|﹣3|的值是( )
A.3 B. C.﹣3 D.﹣
9.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为( )
A.3382×108元 B.3.382×108元 C.338.2×109元 D.3.382×1011元
10.如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是2∶1,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )
A.0.2 B.0.25 C.0.4 D.0.5
二、填空题(共7小题,每小题3分,满分21分)
11.若一个多边形的内角和是900º,则这个多边形是 边形.
12.若,则= .
13.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 .
14.已知:如图,矩形ABCD中,AB=5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,则AE的长为_____.
15.二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是_____.
16.如图,在梯形中,,,点、分别是边、的中点.设,,那么向量用向量表示是________.
17.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.
三、解答题(共7小题,满分69分)
18.(10分)计算:(﹣2)2+20180﹣
19.(5分) “校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图1;
(2)求图2中表示家长“赞成”的圆心角的度数;
(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?
20.(8分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).
21.(10分)先化简代数式:,再代入一个你喜欢的数求值.
22.(10分)解方程:1+
23.(12分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.
(1)求证:CD是⊙O的切线;
(2)若CD=2,求⊙O的半径.
24.(14分)已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.
(1)A点坐标为 ;B点坐标为 ;F点坐标为 ;
(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;
(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.
【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,
故选B.
【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.
2、C
【解析】
根据旋转的性质和三角形内角和解答即可.
【详解】
∵将△ABC绕点C顺时针旋转90°得到△EDC.
∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,
∴∠ACD=90°-20°=70°,
∵点A,D,E在同一条直线上,
∴∠ADC+∠EDC=180°,
∵∠EDC+∠E+∠DCE=180°,
∴∠ADC=∠E+20°,
∵∠ACE=90°,AC=CE
∴∠DAC+∠E=90°,∠E=∠DAC=45°
在△ADC中,∠ADC+∠DAC+∠DCA=180°,
即45°+70°+∠ADC=180°,
解得:∠ADC=65°,
故选C.
【点睛】
此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.
3、C
【解析】
根据近似数的精确度:近似数5.0×102精确到十位.
故选C.
考点:近似数和有效数字
4、C
【解析】
先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.
【详解】
去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①
方程①的根的情况有两种:
(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.
解得a=.
当a=时,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.
(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.
(i)当x=1时,代入①式得3﹣a=1,即a=3.
当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.
而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.
(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.
当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣ .
x1是增根,故x=﹣为方程的唯一实根;
因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个.
故选C.
【点睛】
考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.
5、B
【解析】
根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.
【详解】
A选项,(1,1)到坐标原点的距离为<2,因此点在圆内,
B选项(,) 到坐标原点的距离为=2,因此点在圆上,
C选项 (1,3) 到坐标原点的距离为>2,因此点在圆外
D选项(1,) 到坐标原点的距离为<2,因此点在圆内,
故选B.
【点睛】
本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.
6、B
【解析】
总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
【详解】
要想知道自己是否入选,老师只需公布第五名的成绩,
即中位数.
故选B.
7、C
【解析】
根据定义运算“※” 为: a※b=,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.
【详解】
解:y=2※x=,
当x>0时,图象是y=对称轴右侧的部分;
当x<0时,图象是y=对称轴左侧的部分,
所以C选项是正确的.
【点睛】
本题考查了二次函数的图象,利用定义运算“※”为: a※b=
得出分段函数是解题关键.
8、A
【解析】
分析:根据绝对值的定义回答即可.
详解:负数的绝对值等于它的相反数,
故选A.
点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.
9、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
3382亿=338200000000=3.382×1.
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、B
【解析】
设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1.
【详解】
解:设大正方形边长为2,则小正方形边长为1,
因为面积比是相似比的平方,
所以大正方形面积为4,小正方形面积为1,
则针孔扎到小正方形(阴影部分)的概率是;
故选:B.
【点睛】
本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
二、填空题(共7小题,每小题3分,满分21分)
11、七
【解析】
根据多边形的内角和公式,列式求解即可.
【详解】
设这个多边形是边形,根据题意得,
,
解得.
故答案为.
【点睛】
本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
12、1.
【解析】
试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
考点:二次根式有意义的条件.
13、4n﹣1.
【解析】
由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,···那么第n个就有阴影小三角形1+4(n﹣1)=4n﹣1个.
14、
【解析】
根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF=AB=5,EF=EA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.
【详解】
∵矩形ABCD中,AB=5,BC=3,
∴CD=AB=5,AD=BC=3,∠D=∠C=90°,
由折叠的性质可知,BF=AB=5,EF=EA,
在Rt△BCF中,CF==4,
∴DF=DC﹣CF=1,
设AE=x,则EF=x,DE=3﹣x,
在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,
解得,x=,
故答案为:.
【点睛】
此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.
15、
【解析】
首先由图可得此转盘被平分成了24等份,其中惊蛰、春分、清明区域有3份,然后利用概率公式求解即可求得答案.
【详解】
∵如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,
∴指针落在惊蛰、春分、清明的概率是:.
故答案为
【点睛】
此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
16、
【解析】
分析:根据梯形的中位线等于上底与下底和的一半表示出EF,然后根据向量的三角形法则解答即可.
详解:∵点E、F分别是边AB、CD的中点,∴EF是梯形ABCD的中位线,FC=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法则得,=+=2+===2+.
故答案为:2+.
点睛:本题考查了平面向量,平面向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键,本题还考查了梯形的中位线等于上底与下底和的一半.
17、1
【解析】
根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.
【详解】
解:根据题意得=1%,
解得n=1,
所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.
故答案为1.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
三、解答题(共7小题,满分69分)
18、﹣1
【解析】
分析:首先计算乘方、零次幂和开平方,然后再计算加减即可.
详解:原式=4+1-6=-1.
点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.
19、(1)答案见解析(2)36°(3)4550名
【解析】
试题分析:(1)根据认为无所谓的家长是80人,占20%,据此即可求得总人数;
(2)利用360乘以对应的比例即可求解;
(3)利用总人数6500乘以对应的比例即可求解.
(1)这次调查的家长人数为80÷20%=400人,反对人数是:400-40-80=280人,
;
(2)360×=36°;
(3)反对中学生带手机的大约有6500×=4550(名).
考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.
20、甲建筑物的高AB为(30-30)m,乙建筑物的高DC为30m
【解析】
如图,过A作AF⊥CD于点F,
在Rt△BCD中,∠DBC=60°,BC=30m,
∵=tan∠DBC,
∴CD=BC•tan60°=30m,
∴乙建筑物的高度为30m;
在Rt△AFD中,∠DAF=45°,
∴DF=AF=BC=30m,
∴AB=CF=CD﹣DF=(30﹣30)m,
∴甲建筑物的高度为(30﹣30)m.
21、
【解析】
先根据分式的运算法则进行化简,再代入使分式有意义的值计算.
【详解】
解:原式
.
使原分式有意义的值可取2,
当时,原式.
【点睛】
考核知识点:分式的化简求值.掌握分式的运算法则是关键.
22、无解.
【解析】
两边都乘以x(x-3),去分母,化为整式方程求解即可.
【详解】
解:去分母得:x2﹣3x﹣x2=3x﹣18,
解得:x=3,
经检验x=3是增根,分式方程无解.
【点睛】
题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
23、(2)1
【解析】
试题分析:(1)连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;
(2)连结BC,由AB为直径得∠ACB=90°,由==,得∠BOC=60°,则∠BAC=30°,所以
∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三边的关系得AC=2CD=1,在Rt△ACB中,利用含30°的直角三角形三边的关系得BC=AC=1,AB=2BC=8,所以⊙O的半径为1.
试题解析:(1)证明:连结OC,如图,
∵=
∴∠FAC=∠BAC
∵OA=OC
∴∠OAC=∠OCA
∴∠FAC=∠OCA
∴OC∥AF
∵CD⊥AF
∴OC⊥CD
∴CD是⊙O的切线
(2)解:连结BC,如图
∵AB为直径
∴∠ACB=90°
∵==
∴∠BOC=×180°=60°
∴∠BAC=30°
∴∠DAC=30°
在Rt△ADC中,CD=2
∴AC=2CD=1
在Rt△ACB中,BC=AC=×1=1
∴AB=2BC=8
∴⊙O的半径为1.
考点:圆周角定理, 切线的判定定理,30°的直角三角形三边的关系
24、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析
【解析】
(1)根据坐标轴上点的特点建立方程求解,即可得出结论;
(2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;
(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.
【详解】
(1)针对于抛物线,
令x=0,则,
∴,
令y=0,则,
解得,x=1或x=3,
∴,
综上所述:,,;
(2)由(1)知,,,
∵BM=FM,
∴,
∵,
∴直线AC的解析式为:,
联立抛物线解析式得:,
解得:或,
∴,
如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,
∴,
解得:,
∴,
过H作l∥AC,
∴直线l的解析式为,
联立抛物线解析式,解得,
∴,
即:在直线AC下方的抛物线上不存在点P,使;
(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,
设,,直线DE的解析式为,
联立直线DE的解析式与抛物线解析式联立,得,
∴,,
∵DG⊥x轴,
∴DG∥OM,
∴,
∴,
即,
∴,同理可得
∴,
∴,
即,
∴,
∴直线DE的解析式为,
∴直线DE必经过一定点.
【点睛】
本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.
浙江杭州西湖区重点名校2021-2022学年十校联考最后数学试题含解析: 这是一份浙江杭州西湖区重点名校2021-2022学年十校联考最后数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔,已知m=,n=,则代数式的值为等内容,欢迎下载使用。
2021-2022学年上海市宝山区重点名校十校联考最后数学试题含解析: 这是一份2021-2022学年上海市宝山区重点名校十校联考最后数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,不等式组的解在数轴上表示为等内容,欢迎下载使用。
2021-2022学年湖北省孝昌县重点名校十校联考最后数学试题含解析: 这是一份2021-2022学年湖北省孝昌县重点名校十校联考最后数学试题含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。