终身会员
搜索
    上传资料 赚现金
    2021-2022学年湖南省张家界市桑植县中考联考数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年湖南省张家界市桑植县中考联考数学试题含解析01
    2021-2022学年湖南省张家界市桑植县中考联考数学试题含解析02
    2021-2022学年湖南省张家界市桑植县中考联考数学试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖南省张家界市桑植县中考联考数学试题含解析

    展开
    这是一份2021-2022学年湖南省张家界市桑植县中考联考数学试题含解析,共24页。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长( )

    A. B. C. D.
    2.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是(  )

    A. B. C. D.
    3.如图,在中,分别在边边上,已知,则的值为( )

    A. B. C. D.
    4.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )

    A. B. C. D.
    5.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是(  )
    A. B.
    C. D.
    6.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种.
    A.1 B.2 C.3 D.4
    7.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )

    A.(―1,2)
    B.(―9,18)
    C.(―9,18)或(9,―18)
    D.(―1,2)或(1,―2)
    8.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有(  )

    A.1对 B.2对 C.3对 D.4对
    9.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为(  )
    A.6×105 B.6×106 C.6×107 D.6×108
    10.2017上半年,四川货物贸易进出口总值为2 098.7亿元,较去年同期增长59.5%,远高于同期全国19.6%的整体进出口增幅.在“一带一路”倡议下,四川同期对以色列、埃及、罗马尼亚、伊拉克进出口均实现数倍增长.将2098.7亿元用科学记数法表示是(  )
    A.2.098 7×103 B.2.098 7×1010 C.2.098 7×1011 D.2.098 7×1012
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).

    12.如图,点分别在正三角形的三边上,且也是正三角形.若的边长为,的边长为,则的内切圆半径为__________.

    13.如图,已知,点为边中点,点在线段上运动,点在线段上运动,连接,则周长的最小值为______.

    14.分解因式:x2-9=_ ▲ .
    15.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.

    16.把16a3﹣ab2因式分解_____.
    三、解答题(共8题,共72分)
    17.(8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.

    请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.
    18.(8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:
    AQI指数
    质量等级
    天数(天)
    0-50

    m
    51-100

    44
    101-150
    轻度污染
    n
    151-200
    中度污染
    4
    201-300
    重度污染
    2
    300以上
    严重污染
    2

    (1)统计表中m= ,n= ,扇形统计图中,空气质量等级为“良”的天数占 %;
    (2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?
    19.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.
    求证:CF⊥DE于点F.

    20.(8分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).
    (1)求抛物y=x2+bx+c线的解析式.
    (2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.
    (3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).

    21.(8分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
    (1)求证:BC是⊙O的切线;
    (2)已知AD=3,CD=2,求BC的长.

    22.(10分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
    (1)求抛物线的解析式和顶点坐标;
    (2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
    ①若B、C都在抛物线上,求m的值;
    ②若点C在第四象限,当AC2的值最小时,求m的值.
    23.(12分)如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,∠AOB=120°.
    (1)求这条抛物线的表达式;
    (2)过点C作CE⊥OB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与△AOE相似,求点P的坐标;
    (3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A、E′B,求E′A+E′B的最小值.

    24.如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.
    【详解】
    过O作直线OE⊥AB,交CD于F,
    ∵AB//CD,
    ∴OF⊥CD,OE=12,OF=2,
    ∴△OAB∽△OCD,
    ∵OE、OF分别是△OAB和△OCD的高,
    ∴,即,
    解得:CD=1.

    故选D.
    【点睛】
    本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.
    2、B
    【解析】
    解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;

    当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.

    3、B
    【解析】
    根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.
    【详解】
    解:∵,
    ∴,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴,
    故选:B.
    【点睛】
    本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.
    4、C
    【解析】
    连接CD,交MN于E,
    ∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
    ∴MN⊥CD,且CE=DE.∴CD=2CE.
    ∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.
    ∴.
    ∵在△CMN中,∠C=90°,MC=6,NC=,∴
    ∴.
    ∴.故选C.
    5、C
    【解析】
    根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.
    【详解】
    解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;
    B、由一次函数图象可知,k>0,∴﹣k<0,-=>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;
    C、由一次函数图象可知,k<0,∴﹣k>0,-=<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;
    D、由一次函数图象可知,k<0,∴﹣k>0,-=<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;
    故选:C.
    【点睛】
    本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.
    6、C
    【解析】
    分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值.
    详解:解:设2元的共有x张,5元的共有y张,
    由题意,2x+5y=27
    ∴x=(27-5y)
    ∵x,y是非负整数,
    ∴或或,
    ∴付款的方式共有3种.
    故选C.
    点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解.
    7、D
    【解析】
    试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且= .∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).
    方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).
    ∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).
    故答案选D.

    考点:位似变换.
    8、C
    【解析】
    ∵∠ACB=90°,CD⊥AB,
    ∴△ABC∽△ACD,
    △ACD∽CBD,
    △ABC∽CBD,
    所以有三对相似三角形.
    故选C.
    9、C
    【解析】
    将一个数写成的形式,其中,n是正数,这种记数的方法叫做科学记数法,根据定义解答即可.
    【详解】
    解:6000万=6×1.
    故选:C.
    【点睛】
    此题考查科学记数法,当所表示的数的绝对值大于1时,n为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n的值的确定是解题的关键.
    10、C
    【解析】
    将2098.7亿元用科学记数法表示是2.0987×1011,
    故选:C.
    点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(a+b)2=a2+2ab+b2
    【解析】
    完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.
    【详解】
    解:

    ,




    【点睛】
    此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.
    12、
    【解析】
    根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=(AE+AF-EF)=(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.
    【详解】
    解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,

    ∴AD=AE=[(AB+AC)-(BD+CE)]= [(AB+AC)-(BF+CF)]=(AB+AC-BC),

    如图2,∵△ABC,△DEF都为正三角形,
    ∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
    ∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
    在△AEF和△CFD中,

    ∴△AEF≌△CFD(AAS);
    同理可证:△AEF≌△CFD≌△BDE;
    ∴BE=AF,即AE+AF=AE+BE=a.
    设M是△AEF的内心,过点M作MH⊥AE于H,
    则根据图1的结论得:AH=(AE+AF-EF)=(a-b);
    ∵MA平分∠BAC,
    ∴∠HAM=30°;
    ∴HM=AH•tan30°=(a-b)•=
    故答案为:.
    【点睛】
    本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键.
    13、
    【解析】
    作梯形ABCD关于AB的轴对称图形,将BC'绕点C'逆时针旋转120°,则有GE'=FE',P与Q是关于AB的对称点,当点F'、G、P三点在一条直线上时,△FEP的周长最小即为F'G+GE'+E'P,此时点P与点M重合,F'M为所求长度;过点F'作F'H⊥BC',M是BC中点,则Q是BC'中点,由已知条件∠B=90°,∠C=60°,BC=2AD=4,可得C'Q=F'C'=2,∠F'C'H=60°,所以F'H=,HC'=1,在Rt△MF'H中,即可求得F'M.
    【详解】
    作梯形ABCD关于AB的轴对称图形,
    作F关于AB的对称点G,P关于AB的对称点Q,
    ∴PF=GQ,
    将BC'绕点C'逆时针旋转120°,Q点关于C'G的对应点为F',
    ∴GF'=GQ,
    设F'M交AB于点E',
    ∵F关于AB的对称点为G,
    ∴GE'=FE',
    ∴当点F'、G、P三点在一条直线上时,△FEP的周长最小即为F'G+GE'+E'P,此时点P与点M重合,

    ∴F'M为所求长度;
    过点F'作F'H⊥BC',
    ∵M是BC中点,
    ∴Q是BC'中点,
    ∵∠B=90°,∠C=60°,BC=2AD=4,
    ∴C'Q=F'C'=2,∠F'C'H=60°,
    ∴F'H=,HC'=1,
    ∴MH=7,
    在Rt△MF'H中,F'M;
    ∴△FEP的周长最小值为.
    故答案为:.
    【点睛】
    本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键.
    14、 (x+3)(x-3)
    【解析】
    x2-9=(x+3)(x-3),
    故答案为(x+3)(x-3).
    15、
    【解析】
    过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
    【详解】
    如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
    ∵∠CAD+∠ACD=90°,
    ∠BCE+∠ACD=90°,
    ∴∠CAD=∠BCE,
    在等腰直角△ABC中,AC=BC,
    在△ACD和△CBE中,

    ∴△ACD≌△CBE(AAS),
    ∴CD=BE=1,
    ∴AD=2,
    ∴AC=,
    ∴AB=AC=,
    ∴sinα=,
    故答案为.

    【点睛】
    本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.
    16、a(4a+b)(4a﹣b)
    【解析】
    首先提取公因式a,再利用平方差公式分解因式得出答案.
    【详解】
    解:16a3-ab2
    =a(16a2-b2)
    =a(4a+b)(4a-b).
    故答案为:a(4a+b)(4a-b).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.

    三、解答题(共8题,共72分)
    17、(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.
    【解析】
    试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;
    (2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;

    (3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;
    (4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.
    考点:①条形统计图;②扇形统计图.
    18、 (1)m=20,n=8;55;(2) 答案见解析.
    【解析】
    (1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;
    (2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.
    【详解】
    (1)∵m=80×25%=20,n=80-20-44-4-2-2=8,
    ∴空气质量等级为“良”的天数占:×100%=55%.
    故答案为20,8,55;
    (2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),
    答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;
    补全统计图:

    【点睛】
    此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
    19、证明见解析.
    【解析】
    根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.
    【详解】
    ∵AD∥BE,∴∠A=∠B.
    在△ACD和△BEC中
    ∵,∴△ACD≌△BEC(SAS),∴DC=CE.
    ∵CF平分∠DCE,∴CF⊥DE(三线合一).
    【点睛】
    本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.
    20、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析;(3)点、的坐标分别为、或、或、.
    【解析】
    (1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式
    (2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.
    (3)由题得出tanBAO=,分情况讨论求得F,H坐标.
    【详解】
    (1)把点、代入得,
    解得,,
    ∴抛物线的解析式为.
    (2)由得,∴顶点的坐标为,
    把代入得解得,∴直线解析式为,
    设点,代入得,∴得,
    设点,代入得,∴得,
    由于直线与轴、轴分别交于点、
    ∴易得、,
    ∴,
    ∴,∵点在直线上,
    ∴,
    ∴,即,
    ∵,
    ∴以点为圆心,半径长为4的圆与直线相离.
    (3)点、的坐标分别为、或、或、.
    C(-1,-1),A(0,6),B(1,3)
    可得tanBAO=,
    情况1:tanCF1M= = , CF1=9,
    M F1=6,H1F1=5, F1(8,8),H1(3,3);
    情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);
    情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3与H2重合).
    【点睛】
    本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.
    21、 (1)证明见解析
    (2)BC=
    【解析】
    (1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;
    (2)可证明△ABC∽△BDC,则,即可得出BC=.
    【详解】
    (1)∵AB是⊙O的切直径,
    ∴∠ADB=90°,
    又∵∠BAD=∠BED,∠BED=∠DBC,
    ∴∠BAD=∠DBC,
    ∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
    ∴∠ABC=90°,
    ∴BC是⊙O的切线;
    (2)解:∵∠BAD=∠DBC,∠C=∠C,
    ∴△ABC∽△BDC,
    ∴,即BC2=AC•CD=(AD+CD)•CD=10,
    ∴BC=.
    考点:1.切线的判定;2.相似三角形的判定和性质.
    22、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为 .
    【解析】
    分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
    详解:
    (1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
    ∴﹣4﹣8+c=0,即c=12,
    ∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
    则顶点坐标为(﹣2,16);
    (2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
    ∵点B关于原点的对称点为C,
    ∴C(﹣m,﹣n),
    ∵C落在抛物线上,
    ∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
    解得:﹣m2+4m+12=m2﹣4m﹣12,
    解得:m=2或m=﹣2;
    ②∵点C(﹣m,﹣n)在第四象限,
    ∴﹣m>0,﹣n<0,即m<0,n>0,
    ∵抛物线顶点坐标为(﹣2,16),
    ∴0<n≤16,
    ∵点B在抛物线上,
    ∴﹣m2﹣4m+12=n,
    ∴m2+4m=﹣n+12,
    ∵A(2,0),C(﹣m,﹣n),
    ∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
    当n=时,AC2有最小值,
    ∴﹣m2﹣4m+12=,
    解得:m=,
    ∵m<0,∴m=不合题意,舍去,
    则m的值为.
    点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.
    23、 (1) y=x2﹣x;(2)点P坐标为(0,)或(0,);(3).
    【解析】
    (1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;
    (2)∠EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP′=2OC时,△POC与△AOE相似;
    (3)如图,取Q(,0).连接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最小值就是线段AQ的长.
    【详解】
    (1)过点A作AH⊥x轴于点H,

    ∵AO=OB=2,∠AOB=120°,
    ∴∠AOH=60°,
    ∴OH=1,AH=,
    ∴A点坐标为:(-1,),B点坐标为:(2,0),
    将两点代入y=ax2+bx得:

    解得:,
    ∴抛物线的表达式为:y=x2-x;
    (2)如图,

    ∵C(1,-),
    ∴tan∠EOC=,
    ∴∠EOC=30°,
    ∴∠POC=90°+30°=120°,
    ∵∠AOE=120°,
    ∴∠AOE=∠POC=120°,
    ∵OA=2OE,OC=,
    ∴当OP=OC或OP′=2OC时,△POC与△AOE相似,
    ∴OP=,OP′=,
    ∴点P坐标为(0,)或(0,).
    (3)如图,取Q(,0).连接AQ,QE′.


    ,∠QOE′=∠BOE′,
    ∴△OE′Q∽△OBE′,
    ∴,
    ∴E′Q=BE′,
    ∴AE′+BE′=AE′+QE′,
    ∵AE′+E′Q≥AQ,
    ∴E′A+E′B的最小值就是线段AQ的长,最小值为.
    【点睛】
    本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题.
    24、见解析
    【解析】
    试题分析:首先根据旋转的性质,找到两组对应点,连接这两组对应点;然后作连接成的两条线段的垂直平分线,两垂直平分线的交点即为旋转中心,据此解答即可.
    解:如图所示,点P即为所求作的旋转中心.


    相关试卷

    [数学][一模]2024年湖南省张家界市桑植县中考一模数学试题(原题版+解析版): 这是一份[数学][一模]2024年湖南省张家界市桑植县中考一模数学试题(原题版+解析版),文件包含数学一模2024年湖南省张家界市桑植县中考一模数学试题解析版pdf、数学一模2024年湖南省张家界市桑植县中考一模数学试题原题版pdf等2份试卷配套教学资源,其中试卷共14页, 欢迎下载使用。

    湖南省张家界市桑植县2017届九年级(上)期中数学试卷(含解析): 这是一份湖南省张家界市桑植县2017届九年级(上)期中数学试卷(含解析),共20页。试卷主要包含了选择题,四象限,解答题等内容,欢迎下载使用。

    2024年湖南省张家界市桑植县中考数学一模试卷(含解析): 这是一份2024年湖南省张家界市桑植县中考数学一模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map