人教版八年级上册第十一章 三角形综合与测试课后练习题
展开
这是一份人教版八年级上册第十一章 三角形综合与测试课后练习题,共12页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
全等三角形姓名:_______________班级:_______________得分:_______________一 选择题:1.下列结论错误的是( ) A.全等三角形对应边上的中线相等 B.两个直角三角形中,两个锐角相等,则这两个三角形全等 C.全等三角形对应边上的高相等 D.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等2.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为( ) A.30° B.50° C.80° D.100°3.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是1000,那么△ABC中与这个角对应的角是( ) A.∠A B.∠B C.∠C D.∠D 4.如图,△ABC≌△DEF,则此图中相等的线段有( )
A.1对 B.2对 C.3对 D.4对 5.要测量河两岸相对的两点,的距离,先在的垂线上取两点,,使,再作出的垂线,使,,在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角6.如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE7.如图,已知点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则有( ) A.△ABD≌△AFD B.△AFE≌△ADC C.△AEF≌△ACB D.△ABC≌△ADE8.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( ) A.1个 B.2个 C.3个 D.4个 9.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是( ) A.1 B.2 C.3 D.410.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于( ) A.5 B.4 C.3 D.211.如图,在△ABC中,BD平分∠ABC,与AC交于点D,DE⊥AB于点E,若BC=5,△BCD的面积为5,则ED的长为( ). A. B. 1 C.2 D.5 12.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是( ) A.① B.② C.①② D.①②③13.如图所示,△ABC是等边三角形,AQ=PQ, PR⊥AB于R点,PS⊥AC于S点,PR=PS.则四个结论:①点P在∠BAC的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的结论是( ) A.①②③④ B.只有①② C.只有②③ D.只有①③14.如图,AC=AD,BC=BD,连结CD交AB于点E,F是AB上一点,连结FC,FD,则图中的全等三角形共有( ) A.3对 B.4对 C.5对 D.6对 15.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( ) A.10 B.7 C.5 D.416.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论共有( ) A.4个 B.3个 C.2个 D.1个17.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为( ) A.10 B.12 C.14 D.1620.如图,在不等边△ABC中,PM⊥AB于点M,PN⊥AC于点N,且PM=PN,Q在AC上,PQ=QA,MP=3,△AMP的面积是6,下列结论:① AM<PQ+QN,②QP∥AM,③△BMP≌△PQC,④∠QPC+∠MPB=90°,⑤△PQN的周长是7,其中正确的有( )个. A.1 B.2 C.3 D.4二 填空题:21.小明将一块三角形的玻璃棒摔碎成如图所示的四块(即图中标有1,2,3,4的四块),若只带一块配成原来一样大小的三角形,则应该带第_______块.22.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________. 23.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是______.24.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号 是 .如图,△ABC的角平分线交于点P,已知AB,BC,CA的长分别为5,7,6,则S△ABP∶S△BPC∶S△APC=___________.26.如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE= . 27.如图,OP平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于 cm2.28.如图的三角形纸片中,AB=8cm,BC=6cm,AC=7cm,沿过点B的直线折叠三角形,使点C落在AB边的点E处,折痕为BD,则△AED的周长为 .30.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为 .31.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,判断 EC与BF的关系,并说明理由.
32.如图,已知△ABC中,点D在边AC上,且BC=CD(1)用尺规作出∠ACB的平分线CP(保留作图痕迹,不要求写作法);(2)在(1)中,设CP与AB相交于点E,连接DE,求证:BE=DE. 33.如图,四边形ABDC中,∠D=∠ABD=90゜,点O为BD的中点,且OA平分∠BAC. (1)求证:OC平分∠ACD;(2)求证:AB+CD=AC.
34.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC于点G,连接FG.
(1)求∠DFG的度数;
(2)设∠BAD=θ,
①当θ为何值时,△DFG为等腰三角形;
②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.
35.如图,在△ABC中,AD为BC边上的中线,E为AC上的一点,BE交AD于点F,已知AE=EF. 求证:AC=BF. 36.已知三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论. 37.如图(1)边长为6的等边三角形ABC中,点D沿射线AB方向由A向B运动,点F同时从C出发,以相同的速度沿射线BC方向运动,过点D作DE⊥AC,连结DF交射线AC于点G.(1) 当点D运动到AB的中点时,求AE的长;(2) 当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图(2)的情况时,EG的长始终等于AC的一半吗?若改变,说明理由,若不变,请证明EG等于AC的一半. 38.问题背景: 如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系,并说明理由.拓展应用: 如图2,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,试求此时两舰艇之间的距离. 参考答案1、B 2、B 3、A 4、D 5、B 6、D 7、D 8、C 9、D 10、B 11、C 12、D 13、A14、D 15、C 16、A 17、D.18、C 19、C 20、C 21、2 块. 22、55° 23、4 .24、①②③25、5∶7∶6 26、4; 27、 12 cm2.28、 9cm .29、1或4 30、2∠α+∠A=180°.31、平行且相等32、【解答】(1)解:如图1,射线CP为所求作的图形.(2)证明:∵CP是∠ACB的平分线∴∠DCE=∠BCE.在△CDE和△CBE中,,∴△DCE≌△BCE(SAS),∴BE=DE. 33、1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴.∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点. (2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形. (3)△ACN仍为等腰直角三角形.证明:如图3,此时A、B、N三点在同一条直线上.∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形. 34、 35、证:延长AD到G,使得DG=AD.(1分) 在△ADC和△GDB中 ∴△ADC≌△GDB ∴AC=BG 且∠CAD=∠G∵AE=EF∴∠EFA=∠EAF∴∠G=∠EFA∵∠EFA=∠BFG∴∠G=∠BFG∴BG=BF∵AC=BG∴BF=AC 36、(1)证明:连结AD.∵AB=AC ∠BAC=90° D为BC的中点 ∴∠B=∠BAD=∠DAC=45°,AD⊥BC ∴BD=AD, ∠BDA=90°又BE=AF∴△BDE≌△ADF (SAS)∴ED=FD ∠BDE=∠ADF∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°∴△DEF为等腰直角三角形 (2)△DEF仍为等腰直角三角形 证明:连结AD ∵AB=AC ∠BAC=90° D为BC的中点 ∴∠DAC=∠BAD=∠ABD=45°,AD⊥BC ∴BD=AD, ∠BDA=90°∴∠DAF=∠DBE=135°又AF=BE∴△DAF≌△DBE (SAS)∴FD=ED ∠FDA=∠EDB∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°∴△DEF仍为等腰直角三角形 37、 (1)AE=(2)设AD=x,则CF=x,BD=6-x,BF=6+x∵∠B=60°,∠BDF=90°∴BF=2BD 即6+x=2×(6-x)∴x=2即AD=2 ∴BD=4,DF=∴S△BDF=×4×= (3)不变 过F作FM⊥AG延长线于M由AD=CF,∠AED=∠FMC=90°,∠A=∠FCM=60°可得FM=DE易知△DEG≌△FMG由全等可得CM=AE,FG=GM即AC=AE+EC=CM+CE=EG+GM=2GE38、(1)延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论应是 EF=BE+DF ;(2)如图,连接EF,延长AE、BF相交于点C,∵∠AOB=40°+90°+(90°﹣80°)=140°,∠EOF=70°,∴∠EAF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣40°)+(80°+50°)=180°,延长FB到G,使BG=AE,连接OG,先证明△AOE≌△BOG,再证明△OEF≌△OGF,可得出结论应是 EF=AE+BF ;即EF=2×(50+70)=240海里.答:此时两舰艇之间的距离是240海里.
相关试卷
这是一份苏科版八年级上册1.2 全等三角形巩固练习,文件包含苏科版八年级数学上册同步精品讲义第1章全等三角形综合测试卷教师版docx、苏科版八年级数学上册同步精品讲义第1章全等三角形综合测试卷学生版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份初中数学第一章 全等三角形综合与测试课后练习题,共16页。
这是一份2021学年1 全等三角形达标测试,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。