2023届高考人教B版数学一轮复习课件(适用于新高考新教材) 第七章 空间向量与立体几何 7.4 空间直线、平面的垂直
展开
这是一份2023届高考人教B版数学一轮复习课件(适用于新高考新教材) 第七章 空间向量与立体几何 7.4 空间直线、平面的垂直,共60页。PPT课件主要包含了内容索引,必备知识预案自诊,关键能力学案突破,知识梳理,平行或重合,a与b,两条相交,l∥m,它在平面上的射影,0°的角等内容,欢迎下载使用。
素养提升微专题7 平面图形折叠问题的解题技巧
1.直线与直线所成的角一般地,如果a,b是空间中的两条异面直线,过空间中 一点,分别作与a,b 的直线a',b',则 所成角的大小,称为异面直线a与b所成角的大小. 规定空间中两条平行直线所成角的大小为 .两条直线所成的角也称为这两条直线的 .特别地,空间中两条直线l,m所成角的大小为 时,称l与m ,记作l⊥m.
2.直线与平面垂直的定义
3.直线与平面垂直的判定定理
4.直线与平面垂直的性质定理
5.直线与平面所成的角(1)定义:平面的一条斜线和 所成的锐角. (2)规定:一条直线垂直于平面,它们所成的角是 ;一条直线和平面平行,或在平面内,它们所成的角是 . (3)取值范围: .
7.平面与平面垂直一般地,如果两个平面α与β所成角的大小为 ,则称这两个平面互相垂直,记作 . 8.面面垂直的判定定理
9.面面垂直的性质定理
直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)已知直线a,b,c,若a⊥b,b⊥c,则a∥c.( )(2)直线l与平面α内的无数条直线都垂直,则l⊥α.( )(3)设m,n是两条不同的直线,α是一个平面,若m∥n,m⊥α,则n⊥α.( )(4)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )(5)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( )
2.(2020黑龙江大庆高三三模)设l,m,n均为直线,其中m,n在平面α内,“l⊥α”是“l⊥m,且l⊥n”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
答案 A 解析 设l,m,n均为直线,其中m,n在平面α内,若l⊥α,则l⊥m,且l⊥n,反之若l⊥m,且l⊥n,当m∥n时,推不出l⊥α,故“l⊥α”是“l⊥m,且l⊥n”的充分不必要条件,故选A.
3.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是边长为1的正方形,PA=1,则侧面PCD与底面ABCD所成的二面角的大小是( )A.30°B.45°C.60°D.90°
答案 B 解析∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.又底面ABCD是正方形,∴CD⊥AD,而PA∩AD=A,∴CD⊥平面PAD,得CD⊥PD,可知∠PDA为侧面PCD与底面ABCD所成的二面角的平面角.在Rt△PAD中,由PA=AD=1,可得∠PDA=45°.即侧面PAD与底面ABCD所成的二面角的大小是45°,故选B.
4.(2020新高考全国1,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成的角为( )A.20°B.40°C.50°D.90°
答案B 解析由题意知,如图,圆O为赤道所在的大圆.圆O1是在点A处与赤道所在平面平行的晷面.O1C为晷针所在的直线.直线OA在圆O所在平面的射影为直线OB,点B在圆O上,则∠AOB=40°,∴∠COA=50°.又∠CAO=90°,∴∠OCA=40°.∴晷针与点A处的水平面所成角为40°,故选B.
5.(多选)如图,PA垂直于以AB为直径的圆所在的平面,点C是圆周上异于A,B任意一点,则下列结论中正确的是( )A.PB⊥ACB.PC⊥BCC.AC⊥平面PBCD.平面PAC⊥平面PBC
答案 BD 解析 因为PA垂直于以AB为直径的圆所在的平面,所以PA⊥BC,PA⊥AC.又点C是圆周上异于A,B的任意一点,所以AC⊥BC.对于选项A,若PB⊥AC,则可得AC⊥平面PBC,则AC⊥PC,与PA⊥AC矛盾,故选项A错误;对于选项B、D,可知BC⊥平面PAC,所以PC⊥BC,由BC⊂平面PBC,可得平面PAC⊥平面PBC,故选项B,D正确;对于选项C,由AC与PC不垂直,可得AC⊥平面PBC不成立,故选项C错误.故选BD.
考向1 证明线面垂直【例1】 如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥DC,PD=AD,E是PB的中点,F是DC上的点,且DF= AB,PH为△PAD中AD边上的高.求证:(1)PH⊥平面ABCD;(2)EF⊥平面PAB.
证明 (1)∵AB⊥平面PAD,AB⊂平面ABCD,∴平面PAD⊥平面ABCD.∵平面PAD∩平面ABCD=AD,PH⊥AD,∴PH⊥平面ABCD.(2)取PA的中点M,连接MD,ME.∵E是PB的中点,∴ME? AB.又∵DF ? AB,∴ME ? DF,∴四边形MEFD是平行四边形,∴EF∥MD.∵PD=AD,∴MD⊥PA.∵AB⊥平面PAD,∴MD⊥AB.∵PA∩AB=A,∴MD⊥平面PAB,∴EF⊥平面PAB.
考向2 证明线线垂直【例2】 在正方体ABCD-A1B1C1D1中,P为D1D的中点,O为底面ABCD的中心,求证:B1O⊥AP.
证明 如图,易证AB1=CB1.又因为O为AC的中点,所以B1O⊥AC.在矩形BDD1B1中,O,P分别为BD,D1D的中点.易证△POD∽△OB1B,所以∠POD=∠OB1B.所以B1O⊥PO.又AC∩PO=O,所以B1O⊥平面PAC.又AP⊂平面PAC,所以B1O⊥AP.
解题心得证明直线与平面垂直与利用线面垂直的性质证明线线垂直的通法是线面垂直的判定定理的应用,其思维流程为:
对点训练1如图,直三棱柱ABC-A1B1C1中,AC=BC=1,∠ACB=90°,D是A1B1的中点,F在BB1上.(1)求证:C1D⊥平面AA1B1B;(2)在下列给出的三个条件中选取哪两个条件可以使AB1⊥平面C1DF?请选择并证明你的结论.①F为BB1的中点;②AB1= ;③AA1= .
(1)证明 ∵ABC-A1B1C1是直三棱柱,∴AA1⊥平面A1B1C1.∵A1C1=B1C1=1,且∠A1C1B1=90°.又D是A1B1的中点,∴C1D⊥A1B1.∵AA1⊥平面A1B1C1,C1D⊂平面A1B1C1,∴AA1⊥C1D,又A1B1∩AA1=A1,∴C1D⊥平面AA1B1B.
(2)解 选①③能证明AB1⊥平面C1DF.连接A1B,∴DF∥A1B,在△ABC中,AC=BC=1,∠ACB=90°,则AB= ,又AA1= ,则A1B⊥AB1,∴DF⊥AB1.∵C1D⊥平面AA1B1B,AB1⊂平面AA1B1B,∴C1D⊥AB1.∵DF∩C1D=D,∴AB1⊥平面C1DF.
【例3】 (一题多解)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.求证:(1)CE∥平面PAD;(2)平面EFG⊥平面EMN.
证明 (1)(方法1)取PA的中点H,连接EH,DH.因为E为PB的中点,所以EH? AB.又CD ? AB,所以EH ? CD.所以四边形DCEH是平行四边形,所以CE∥DH.又DH⊂平面PAD,CE⊄平面PAD,所以CE∥平面PAD.
(方法2)连接CF.因为F为AB的中点,所以AF= AB.又CD= AB,所以AF=CD.又AF∥CD,所以四边形AFCD为平行四边形.因此CF∥AD,又CF⊄平面PAD,AD⊂平面PAD,所以CF∥平面PAD.因为E,F分别为PB,AB的中点,所以EF∥PA.又EF⊄平面PAD,PA⊂平面PAD,所以EF∥平面PAD.因为CF∩EF=F,故平面CEF∥平面PAD.又CE⊂平面CEF,所以CE∥平面PAD.
(2)因为E,F分别为PB,AB的中点,所以EF∥PA.又因为AB⊥PA,所以EF⊥AB,同理可证AB⊥FG.又因为EF∩FG=F,EF,FG⊂平面EFG,所以AB⊥平面EFG.又因为M,N分别为PD,PC的中点,所以MN∥CD.又AB∥CD,所以MN∥AB,所以MN⊥平面EFG.又因为MN⊂平面EMN,所以平面EFG⊥平面EMN.
思维变式1(变设问)在本例条件下,证明:平面EMN⊥平面PAC.
证明 因为AB⊥PA,AB⊥AC,且PA∩AC=A,PA,AC⊂平面PAC,所以AB⊥平面PAC.又MN∥CD,CD∥AB,所以MN∥AB,所以MN⊥平面PAC.又MN⊂平面EMN,所以平面EMN⊥平面PAC.
思维变式2(变设问)在本例条件下,证明:平面EFG∥平面PAC.
证明 因为E,F,G分别为PB,AB,BC的中点,所以EF∥PA,FG∥AC,又EF⊄平面PAC,PA⊂平面PAC,所以EF∥平面PAC.同理FG∥平面PAC.又EF∩FG=F,所以平面EFG∥平面PAC.
解题心得1.面面垂直判定的2种方法与1个转化(1)2种方法:①面面垂直的定义;②面面垂直的判定定理.(2)1个转化:在已知两个平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.2.面面垂直性质的应用(1)两平面垂直的性质定理是把面面垂直转化为线面垂直的依据,运用时要注意“平面内的直线”.(2)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.
【例4】 如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.
(1)证明 在三棱台ABC-DEF中,AC∥DF,AC⊂平面ACE,DF⊄平面ACE,∴DF∥平面ACE.又∵DF⊂平面DEF,平面ACE∩平面DEF=a,∴DF∥a.(2)解 线段BE上存在点G,且BG= BE时,使得平面DFG⊥平面CDE.取CE的中点O,连接FO并延长交BE于点G,交CB的延长线于点H,连接GD,∵CF=EF,∴GF⊥CE.在三棱台ABC-DEF中,AB⊥BC,可得DE⊥EF.由CF⊥平面DEF,可得CF⊥DE.
又CF∩EF=F,∴DE⊥平面CBEF,∵GF⊂平面CBEF,∴DE⊥GF.∵CE∩DE=E,CE⊂平面CDE,DE⊂平面CDE,∴GF⊥平面CDE.又GF⊂平面DFG,∴平面DFG⊥平面CDE.∵O为CE的中点,EF=CF=2BC,
解题心得(1)对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2)对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.
对点训练2如图,在四棱锥S-ABCD中,侧棱SA=SB=SC=SD,底面ABCD是菱形,AC与BD交于O点.(1)求证:AC⊥平面SBD;(2)若E为BC的中点,点P在侧面△SCD内及其边界上运动,并保持PE⊥AC,试指出动点P的轨迹,并证明.
(1)证明 连接SO,∵底面ABCD是菱形,∴AC⊥BD.又SA=SC,∴AC⊥SO.而SO∩BD=O,∴AC⊥平面SBD.(2)解 取棱SC中点M,CD中点N,连接MN,则动点P的轨迹即是线段MN.连接EM,EN,∵E是BC的中点,M是SC的中点,∴EM∥SB.同理,EN∥BD,∴平面EMN∥平面SBD,∵AC⊥平面SBD,∴AC⊥平面EMN.因此,当点P在线段MN上运动时,总有AC⊥PE.
【例5】 如图,在四棱锥P-ABCD中,AD⊥平面PCD,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.
(1)解 如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PCD,PD⊂平面PCD,所以AD⊥PD.
(2)证明 由(1)知AD⊥PD,又因为BC∥AD,所以PD⊥BC.又PD⊥PB,BC∩PB=B,所以PD⊥平面PBC.(3)解 过点D作DF∥AB,交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1.由已知,得CF=BC-BF=2.
解题心得1.本题证明的关键是垂直与平行的转化,如由AD∥BC,AD⊥PD,得PD⊥BC,进而利用线面垂直的判定定理证明PD⊥平面PBC.2.利用综合法求空间线线角、线面角、二面角一定注意“作角、证明、计算”是完整统一过程,缺一不可.(1)线面角的求法:找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解.(2)二面角的大小用它的平面角来度量.平面角的作法常见的有:①定义法;②垂面法.注意利用等腰、等边三角形的性质.
对点训练3如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.点E是CD边的中点,点F,G分别在线段AB,BC上,且AF=2FB,CG=2GB.(1)证明:PE⊥FG.(2)求二面角P-AD-C的平面角的正切值.(3)求直线PA与直线FG所成的角的余弦值.
(1)证明 ∵PD=PC,且E为CD的中点,∴PE⊥CD.又平面PDC⊥平面ABCD,且平面PDC∩平面ABCD=CD,PE⊂平面PDC,∴PE⊥平面ABCD,又FG⊂平面ABCD,∴PE⊥FG.
(3)解 如图,连接AC,∵AF=2FB,CG=2GB,∴AC∥FG.∴直线PA与FG所成的角即直线PA与AC所成的角.在Rt△PDA中,PA2=AD2+PD2=25,∴PA=5.
类型一 将平面图形折叠成立体图形【例1】 (2020山东德州一中高考模拟)如图是正四棱锥P-ABCD的平面展开图,其中点P1,P2,P3,P4是顶点P展开后的四个点,E,F,G,H分别为P3A,P2D,P4C,P4B的中点,在此四棱锥中,给出下面五个结论:①平面EFGH∥平面ABCD;②PA∥平面BDG;③EF∥平面PBC;④FH∥平面BDG;⑤EF∥平面BDG.其中正确结论的序号是 .
答案①②③④解析先把平面展开图还原为一个四棱锥,如图所示.①∵E,F,G,H分别为PA,PD,PC,PB的中点∴EF∥AD,GH∥BC.∵AD∥BC,∴EF∥GH,∴EF,GH确定平面EFGH.∵EF⊂平面EFGH,AD⊄平面EFGH,∴AD∥平面EFGH,同理AB∥平面EFGH,AB∩AD=A,AB,AD⊂平面ABCD,∴平面EFGH∥平面ABCD,故①正确;
②连接AC,BD交于点O,则O为AC中点,连接OG,G为PC中点,∴OG∥PA,OG⊂平面BDG,PA⊄平面BDG,∴PA∥平面BDG,故②正确;③∵E,F分别为PA,PD的中点,∴EF∥AD.∵四边形ABCD为正方形,∴AD∥BC,∴EF∥BC.又BC⊂平面PBC,EF⊄平面PBC,∴EF∥平面PBC.故③正确;④连接FH,∵F,H为PD,PB的中点,∴FH∥BD.∵BD⊂平面BDG,FH⊄平面BDG,∴FH∥平面BDG.故④正确;⑤由题知,EF∥GH,GH与平面BDG相交,∴EF与平面BDG相交,故⑤错误.故答案为①②③④.
解题心得画折叠图形一般以某个面为基础,依次将其余各面翻折,当然,画图之前要对翻折后形成的立体图形有所认识,这是解答此类问题的关键.
对点训练1如图是一个正方体表面的一种平面展开图,图中的四条线段AB,CD,EF和GH在原正方体中相互异面的有 对.
答案 3 解析 平面图形的折叠应注意折前折后各元素相对位置的变化.画出图形即可判断,相互异面的线段有AB与CD,EF与GH,AB与GH,共3对.
类型二 折叠中的“变”与“不变”
(1)证明:A'O⊥平面BCDE;(2)求二面角A'-CD-B的平面角的余弦值.
(2)解过点O作OH⊥CD交CD的延长线于点H,连接A'H,因为A'O⊥平面BCDE,所以A'H⊥CD,所以∠A'HO为二面角A'-CD-B的平面角.
解题心得折叠中的“变”与“不变”一般地,在同一半平面内的几何元素之间的关系是不变的.涉及两个半平面内的几何元素之间的关系是要变化的.分别位于两个半平面内,但垂直于折叠棱的直线翻折后仍然垂直于折叠棱.
对点训练2(2020安徽肥东综合高中二模)如图1,在边长为4的正方形ABCD中,点E,F分别是AB,BC的中点,点M在AD上,且AM= AD,将△AED,△DCF分别沿DE,DF折叠,使A,C两点重合于点P,如图2所示.(1)试判断PB与平面MEF的位置关系,并给出证明;(2)求二面角M-EF-D的平面角的余弦值.
(2)连接BD交EF于点N,图2中的三角形PDE与三角形PDF分别是图1中的Rt△ADE与Rt△CDF,∴PD⊥PE,PD⊥PF.又PE∩PF=P,∴PD⊥平面PEF,则PD⊥PN,∵PE=PF,点N是EF的中点,∴PN⊥EF.
类型三 立体图形的表面展开图的应用【例3】 如图,在一个底面直径是5 cm,高为2π cm的圆柱形玻璃杯子的上沿B处有一只苍蝇,而恰好在相对的底沿A处有一只蜘蛛,A,B两点是圆柱的一个轴截面的顶点,蜘蛛要想用最快的速度捕捉到这只苍蝇,蜘蛛所走的最短的路程是 .
解题心得求从一点出发沿几何体表面到另一点的最短距离问题:通常把几何体的侧面展开,转化为平面图形中的距离问题.
对点训练3如图所示,已知圆锥中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A.求:(1)绳子的最短长度的平方f(x);(2)绳子最短时,圆锥的顶点S到绳子的最短距离;(3)f(x)的最大值.
解 将圆锥的侧面沿SA展开在平面上,如图所示,则该图为扇形,且弧AA'的长度L就是圆锥底面圆的周长,
相关课件
这是一份2024届高考数学一轮复习(新教材人教A版强基版)第七章立体几何与空间向量7.4空间直线、平面的平行课件,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,a⊄α,b⊂α,a∥b,a∥α,a⊂β,α∩β=b,此平面等内容,欢迎下载使用。
这是一份广东专用2024版高考数学大一轮总复习第七章立体几何7.4空间直线平面的垂直课件,共60页。
这是一份高考数学一轮复习第7章7.4空间直线平面的垂直7课件,共60页。PPT课件主要包含了内容索引,必备知识预案自诊,知识梳理,直线与平面垂直,m∩nO,a⊥α,b⊂α,a∥b,直二面角,b⊥α等内容,欢迎下载使用。