终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届云南省曲靖市第一中学(曲靖市)高三第二次教学质量监测数学(文)试题含解析

    立即下载
    加入资料篮
    2022届云南省曲靖市第一中学(曲靖市)高三第二次教学质量监测数学(文)试题含解析第1页
    2022届云南省曲靖市第一中学(曲靖市)高三第二次教学质量监测数学(文)试题含解析第2页
    2022届云南省曲靖市第一中学(曲靖市)高三第二次教学质量监测数学(文)试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届云南省曲靖市第一中学(曲靖市)高三第二次教学质量监测数学(文)试题含解析

    展开

    这是一份2022届云南省曲靖市第一中学(曲靖市)高三第二次教学质量监测数学(文)试题含解析,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
    2022届云南省曲靖市第一中学(曲靖市)高三第二次教学质量监测数学(文)试题一、单选题1.已知集合,则       A B C D【答案】B【分析】化简集合A根据交集运算求解即可.【详解】故选:B2.设,则在复平面内,复数z对应的点位于(       A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B【分析】先利用复数的除法化简,再利用复数的几何意义判断.【详解】因为所以z对应的点位于复平面内第二象限.故选:B3.设是数列的前n项和,若,则       A4045 B4043 C4041 D2021【答案】A【分析】根据计算可得;【详解】解:因为所以故选:A4.某大型家电商场,在一周内,计划销售两种电器,已知这两种电器每台的进价都是万元,若厂家规定,一家商场进货的台数不高于的台数的倍,且进货至少台,而销售的售价分别为/台和/台,若该家电商场每周可以用来进货的总资金为万元,所进电器都能销售出去,则该商场在一个周内销售电器的总利润(利润售价进价)的最大值为(       A万元 B万元 C万元 D万元【答案】D【分析】设卖场在一周内进货的台数为台,则一周内进货的台数为,根据题意可得出关于的不等式,解出的取值范围,再写出关于的函数关系式,利用函数的单调性可求得的最大值.【详解】设该卖场在一周内进货的台数为台,则一周内进货的台数为设该卖场在一周内销售电器的利润为万元,由题意可得,可得,且函数随着的增大而增大,故(万元).故选:D.5.执行如图所示的程序框图,若输入,则输出的结果是(    A B C D【答案】B【分析】根据输入,利用给定的程序框图,逐次计算,结合判断条件,即可求解.【详解】因为,第一次循环除以的余数是,此时,不符合,继续循环,第二次循环,除以的余数是,此时,不符合,继续循环,第三次循环,除以的余数是,此时,不符合,继续循环,第四次循环,除以的余数是23,此时,符合,此时.故选:B.6.北京冬奥会已于202224日至220日顺利举行,这是中国继北京奥运会、南京青奥会后,第三次举办的奥运赛事,之前,为助力冬奥,增强群众的法治意识,提高群众奥运法律知识水平和文明素质,让法治精神携手冬奥走进千家万户,某市有关部门在该市市民中开展了迎接冬奥·法治同行主题法治宣传教育活动.该活动采取线上线下相结合的方式,线上有知识大闯关冬奥法律知识普及类趣味答题,线下有冬奥普法知识讲座,实现冬奥+普法的全新模式.其中线上知识大闯关答题环节共计30个题目,每个题目2分,满分60分,现在从参与作答知识大闯关题目的市民中随机抽取1000名市民,将他们的作答成绩分成6组:.并绘制了如图所示的频率分布直方图. 估计被抽取的1000名市民作答成绩的中位数是(       A40 B30 C35 D45【答案】C【分析】求出频率分布直方图中频率0.5对应的分数即为中位数.【详解】由频率分布直方图知得分在的频率是,得分在上的频率是,因此中位数在上,设中位数是,则,解得故选:C7.我国在2020922日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y(单位:万元)与处理量x(单位:吨)之间的函数关系可近似表示为,当处理量x等于多少吨时,每吨的平均处理成本最少(       A120 B200 C240 D400【答案】D【分析】先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分分析讨论求出其最小值即可【详解】由题意得二氧化碳每吨的平均处理成本为时,时,取得最小值240 时,当且仅当,即时取等号,此时取得最小值200综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D8.在中,P为线段AB的中点,则等于(       A B C D【答案】C【分析】由条件得为直角三角形,且可得,从而可得各边的关系,进一步可求解.【详解】,(在中,,所以因此为直角三角形,于是由,所以由,得又因为P为线段AB的中点,所以.故选:C9.设直线与双曲线交于两点,若是线段的中点,直线与直线是坐标原点)的斜率的乘积等于,则双曲线的离心率为(       A B C D【答案】D【分析】因为点在双曲线上,利用点差法将点代入双曲线做差化简结合题意可得,利用的平方关系可求出离心率.【详解】,则直线的斜率为,直线的斜率为因为点在双曲线上,所以有化简可得:所以有,离心率为故选:D10.设是函数的导函数,是函数的导函数,若对任意恒成立,则下列选项正确的是(       A BC D【答案】A【分析】根据导函数与函数的单调性及导数的几何意义判断即可;【详解】解:因为对任意恒成立,所以上单调递增,且上单调递减,即的图象增长得越来越慢,从图象上来看函数是上凸递增的,所以,表示点与点的连线的斜率,由图可知故选:A11.正方体的棱长为1EFG分别为BC的中点,有下述四个结论,其中正确的结论是(       C与点B到平面AEF的距离相等;               直线与平面AEF平行;平面AEF截正方体所得的截面面积为        直线与直线EF所成的角的余弦值为.A①④ B②③ C①②③ D①②③④【答案】C【分析】对于:利用平面AEFBC的中点E,得出CB到平面AEF的距离相等;对于:取的中点Q,连接QE.证明出平面平面AEF.得到平面AEF对于:连接,延长AE交于点S.判断出截面即为梯形AEFD1.利用梯形的面积公式直接求解;对于:判断出直线与直线EF所成的角,利用余弦定理即可求的.【详解】对于:假设CB到平面AEF的距离相等,即平面AEFBC平分,则平面AEF必过BC的中点.EBC的中点,所以CB到平面AEF的距离相等.正确对于:如图所示.的中点Q,连接QE.因为,且,所以四边形为平行四边形,所以AE.因为AEFAEF,所以AEF.同理可证:AEF.因为,所以平面平面AEF.又因为平面,所以平面AEF.正确;对于:连接,延长AE交于点S.因为EF分别为BCC1C的中点,所以EFAD1,所以AEFD1四点共面,所以截面即为梯形AEFD1.因为CF=CE,所以,即,所以FS=ESD1F=AE,所以所以等腰的高,梯形的高为,所以梯形的面积为.正确对于:因为,所以直线与直线EF所成的角即为所求.在三角形中,,由余弦定理得, .所以直线与直线EF所成的角的余弦值为.错误.故选:C12.已知,则上恒成立的(       A.必要不充分条件 B.充要条件 C.充分不必要条件 D.既不充分也不必要条件【答案】A【分析】根据上恒成立转化为即可,进而得出的范围,再利用充分条件必要条件的定义即可求解.【详解】由题意可知,,即上恒成立转化为即可,,则.,即解得.时,;所以函数单调递增;时,;所以函数单调递减;时,函数取得最大值为..所以的必要不充分条件,所以上恒成立的必要不充分条件.故选:A.二、填空题13.已知随机变量,且,则a的值为___________.【答案】【分析】利用正态分布的对称性可求解.【详解】因为随机变量根据正态分布的对称性,由,可知.故答案为:14.抛物线过圆的圆心,则该抛物线的准线方程为___________.【答案】【分析】将圆心坐标代入抛物线的方程,求出的值,即可得出该抛物线的准线方程.【详解】圆的标准方程为,圆心坐标为将圆心坐标代入抛物线方程可得,解得因此,该抛物线的准线方程为.故答案为:.15.已知,则___________.【答案】【分析】根据诱导公式及同角三角函数基本关系求出,再由二倍角的余弦公式化简求值即可.【详解】.故答案为:16.已知三棱锥三条侧棱PAPBPC两两互相垂直,且MN分别为该三棱锥的内切球和外接球上的动点,则MN两点间距离的最小值为___________.【答案】【分析】将三棱锥补成正方体,计算出内切球的半径以及点到平面的距离,即可求得两点间距离的最小值.【详解】由已知可将该三棱锥补成正方体,连接,如图所示.设三棱锥的内切球球心为,外接球球心为,内切球与平面的切点为易知三点均在上,在正方体中,平面平面因为四边形为正方形,则平面平面,则,同理可证平面设内切球的半径为,外接球的半径为,则.由等体积法可得由等体积法可得,得两点间距离的最小值为.故答案为:.【点睛】关键点点睛:本题解题关键是将三棱锥置入正方体中,数形结合得到外接球和内切球半径,是一道有一定难度的题.三、解答题17.如图,P是四边形ABCD所在平面外的一点,四边形ABCD的菱形,,平面PAD垂直于底面ABCDGAD边的中点. 求证:(1)平面PAD(2),求多面体PABCD的体积.【答案】(1)证明见解析;(2)54.【分析】1利用面得到平面2证明,得到棱锥的高,利用棱锥体积公式求解.【详解】(1)四边形的菱形,为等边三角形,又的中点,∴又∵平面,平面平面(2)的中点,∴∵平面,平面平面,即是四棱锥的高,是等边三角形,.18.已知数列满足.(1)证明:数列为等比数列;(2)n为偶数时,求数列的前n项和.【答案】(1)证明见解析;(2).【分析】1)根据等比数列的定义,证明等于一个定值即可;2)求出数列的通项公式,利用分组求和法,根据等差等比数列的求和公式即可得出答案.【详解】(1)证明:因为所以所以数列是首项为4,公比为4的等比数列;(2)由(1)可得,即.n为偶数时,.19.已知动点到定点和到直线的距离之比为.(1)求动点的轨迹的方程;(2),过点的直线与曲线相交于两点,则是否为定值?若是,求出该值;若不是,说明理由.【答案】(1)(2)是定值,定值【分析】1)设,根据题意直接列出所满足的方程,化简即可得出答案.2)设出直线的方程,与椭圆的方程联立,消元,写韦达;根据韦达定理求出的值即可.【详解】(1),则由题意,知,即所以,即的轨迹的方程为(2)易知直线的斜率存在,所以设,过点的直线的方程为消去,得:其中所以所以是定值.202021617922分,我国酒泉卫星发射中心用长征二号F遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A型材料是神舟十二号的重要零件,该材料应用前景十分广泛,该公司为了将A型材料更好地投入商用,拟对A型材料进行应用改造,根据市场调研与模拟,得到应用改造投入x(亿元)与产品的直接收益y(亿元)的数据统计如下:x2346810132122232425y1522274048546068.56867.56665时,建立了yx的两个回归模型:模型;模型;当时,确定yx满足的线性回归直线方程为,根据以上阅读材料,解答以下问题:(1)根据下列表格中的数据,比较当时,模型①②中哪个模型拟合效果更好,并说明理由;回归模型模型模型回归方程79.1320.2(2)当应用改造的投入为20亿元时,以回归直线方程为预测依据,计算公司的收益约为多少?附:,当时,相关指数的计算公式为:.【答案】(1)模型拟合效果更好,理由见解析;(2)亿元.【分析】1)分别求出两种的相关指数,通过比较大小,即可求解;2)根据已知条件,结合最小二乘法和线性回归方程的公式,将代入上式的线性回归方程中,即可求解.【详解】(1)对于模型因为,故对应的故对应的相关指数对于模型,同理可得对应的相关指数知,模型拟合效果更好.(2)时,后五组的由最小二乘法可得,所以当时,故当投入20亿元时,预测公司的收益约为: (亿元).21.已知函数.(1)求函数的极大值;(2)对于函数定义域上的任意实数x,若存在常数kb,使得都成立,则称直线为函数分界线设函数,试探究函数是否存在分界线?若存在,请求出分界线的方程;若不存在,请说明理由.【答案】(1)(2)存在,函数存在分界线为,此时【分析】1)根据极值的定义及导数法求函数极值的步骤即可求解;2)根据已知条件及构造函数进而得出两函数的公共点,得出分界直线方程,再根据函数恒成立问题转化为利用导数法求函数的最值及一元二次不等式恒成立即可求解.【详解】(1)由题意可知,所以的定义域为.,解得.,解得.所以函数上单调递增,在上单调递减.时,函数取得极大值为.所以函数的极大值为.(2)..,解得(舍)时,函数单调递增;时,函数单调递减;时,函数取得极小值,也是函数的最小值.所以函数的图象在处有公共点.存在分界线且方程为.上恒成立.上恒成立.所以成立, ..下面再证恒成立...,解得 时,函数单调递减;时,函数单调递增;时,函数取得极大值,也是函数的最大值.所以恒成立.综上①②知,故函数存在分界线为,此时.【点睛】解决此类型题的关键第一问直接利用导数与函数极值的关系即可,第二问根据已知条件构造函数,进而得出两函数的公共顶点,得出分界线必经过该点,用点斜式写出分界线方程,将恒成立问题转化为利用导数求函数最值问题即可.22.曲线经过伸缩变换后得到曲线;以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)AB分别为曲线上的两点,且,求的值.【答案】(1);(2).【分析】1)利用同角三角函数的平方关系,将化为普通方程,求曲线,最后应用公式法求的极坐标方程;2)设,易得,代入由(1)所得极坐标方程可得的值.【详解】(1)曲线的普通方程为经过伸缩变换后得到曲线,代入化简,可得极坐标方程为.(2),由,可得.23.已知函数,记的最小值为m.(1)m(2),求的最小值.【答案】(1)1;(2).【分析】1)将写成分段函数的形式,求出分段函数的最小值,即可得到结果;2)由(1)可知,再利柯西不等式求出最小值.【详解】(1)时,时,时,综上,,故(2)当且仅当时,即时等号成立,的最小值为

    相关试卷

    云南省曲靖市2023届高三第二次教学质量监测数学试题:

    这是一份云南省曲靖市2023届高三第二次教学质量监测数学试题,共6页。

    2023届云南省曲靖市高三下学期第二次教学质量监测数学试题含解析:

    这是一份2023届云南省曲靖市高三下学期第二次教学质量监测数学试题含解析,共22页。试卷主要包含了PM2等内容,欢迎下载使用。

    2023届云南省曲靖市第一中学高三教学质量监测(五)数学试题含解析:

    这是一份2023届云南省曲靖市第一中学高三教学质量监测(五)数学试题含解析,共22页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map