年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题09 有理数的加法-2022年小升初数学无忧衔接(通用版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题09 有理数的加法(原卷版).docx
    • 解析
      专题09 有理数的加法(解析版).docx
    专题09 有理数的加法(原卷版)第1页
    专题09 有理数的加法(原卷版)第2页
    专题09 有理数的加法(原卷版)第3页
    专题09 有理数的加法(解析版)第1页
    专题09 有理数的加法(解析版)第2页
    专题09 有理数的加法(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题09 有理数的加法-2022年小升初数学无忧衔接(通用版)

    展开

    这是一份专题09 有理数的加法-2022年小升初数学无忧衔接(通用版),文件包含专题09有理数的加法解析版docx、专题09有理数的加法原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
    专题09 有理数的加法1.了解有理数加法的意义,理解有理数加法法则的合理性;2.能运用有理数加法法则,正确进行有理数加法运算;3.经历探索有理数加法法则的过程,感受数学学习的方法;4. 能合理使用加法运算律使运算简便。1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.注意:1.有理数的运算分两步走,第一步,确定符号,第二步,确定数字;2.计算的时候要看清符号,同时要熟练掌握计算法则;3.运算律:有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+bb+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+ca+(b+c)注意:1.利用加法交换律、结合律,可以使运算简化,认识运算律对于理解运算有很重要的意义.2.注意两种运算律的正用和反用,以及混合运用. 【题型一】 有理数加法法则的辨析【解题技巧】有理数加法的法则①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;③一个数同0相加,仍得这个数.【典题12021•小店区七年级月考)下列说法正确的是(  )A.两个有理数相加和一定大于每个加数   B.两个非零有理数相加,和可能等于零 C.两个有理数和为负数时,这两个数都是负数 D.两个负数相加,把绝对值相加【典题22022绵阳市七年级期中)对于有理数ab,有以下几种说法,其中正确的说法个数是(  )a+b0,则ab互为相反数;a+b0,则ab异号;a+b0,则ab同号时,则a0b0|a||b|ab异号,则a+b0|a|b,则a+b0A3 B2 C1 D0【变式练习】1.(2021·辽宁朝阳市·七年级期中)两个有理数相加,如果和小于任何一个加数,那么这两个有理数的情况是(  A.同为正数 B.同为负数C.一个正数和一个负数 D.一个为,一个为负数2.(2021·云南省个旧市第二中学七年级期中)下列结论不正确的是(       )A.若a0b0,且a|b|,则ab0   B.若a0b0,且|a|b,则ab0C.若a0b0,则ab0            D.若a0b>0,则ab0 【题型 有理数的加法运算【解题技巧】根据有理数加法的法则计算即可。【典题12021·天津市滨海新区七年级月考)下列运算中,正确的个数有(    A1 B2 C3 D4【典题22021·山东省初一期末)下列各式运算正确的是(    A    B  C   D 【变式练习】1.(2021·江苏泰州市·九年级一模)我国是最早认识负数,并进行相关运算的国家在古代数学名著《九章算术》里,就记载了利用算筹实施正负术的方法,图1表示的是计算的过程按照这种方法,图2表示的过程应是在计算(    A B C D22021·天津津南区·九年级一模)计算的值是(    A B7 C D37 【题型有理数加法的运算律【解题技巧】有理数常见简算方法:①相反数结合——抵消;②同号结合——符号易确定;③同分母结合法——无需通分(分母倍数的也可考虑);④凑整数;⑤同行结合法——分数拆分为整数和分数。【典题12021·广东深圳市·七年级月考)计算:119+(-6.9)+(-3.1)+(-8.35    2)(-)+3.252+(-5.875)+1.15     【典题22021·江苏初一期中计算:嘉嘉的做法如下:[]:原式嘉嘉发现自己的做法出错了,请指出从第几步开始错误,并写出正确的解题过程.   【变式练习】1.(2022年浙江七年级月考)计算,所得的结果是(  )A.-3 B3 C.-5 D522021·内蒙古赤峰市·七年级期末)小明在计算16+-25+24+-35)时,采用了这样的方法:解:16+-25+24+-35=16+24+[-25+-35]=40+-60=-20从而使运算简化,他根据的是___________________________________  【题型 有理数加法在生活实际中的应用【解题技巧】【典题12021·浙江嘉兴市·七年级期末模拟)实际测量一座山的高度时,可在若干个观测点中测量每两个相邻的可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用表示观测点A相对观测点C的高度),根据这次测量的数据,可得观测点A相对观测点B的高度是(    100805020A B240 C390 D210【典题22021•覃塘区期中)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3+10,﹣8+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?    【变式练习】1.(2021·北京海淀区·九年级二模)小云计划户外徒步锻炼,每天有低强度”“高强度”“休息三种方案,下表对应了每天不同方案的徒步距离(单位:).若选择高强度要求前一天必须休息(第一天可选择高强度).则小云5天户外徒步锻炼的最远距离为_______日期12345低强度86654高强度121315128休息00000 2.2022•未央区七年级期末)中国快递越来越“科技范儿”,分拣机器人、大数据AI调度等智能装备系统让分拣效率大大提升.某分拣仓库采用智能分拣系统计划平均每天分拣20万件包裹,但实际每天分拣量与计划相比有出入,超过计划量记为正,未达计划量记为负,下面是该仓库10月份第一周分拣包裹的情况(单位:万件):+5,﹣1,﹣3+6,﹣1+4,﹣8,该仓库本周实际分拣包裹一共是(  )A138万件 B140万件 C141万件 D142万件 【题型 有理数加法的应用幻方问题【解题技巧】利用幻方和相等建立等量关系或直接幻方和相等的性质解题即可。【典题12021•鲤城区校级月考)如图,在一个由6个圆圈组成的三角形里,把﹣15到﹣206个连续整数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最小值是(  )A.﹣53 B.﹣54 C.﹣56 D.﹣57【典题22021·浙江杭州市·七年级期末)如图是一个二阶幻圆模型,现将-12-34-56-78分别填入圆圈内,使横、纵向以及内外圆圈上的4个数字之和都相等,则的值是____________ 【变式练习】1.2022•新北区期中)小学时候大家喜欢玩的幻方游戏,老师稍加创新改成了“幻圆”游戏,现在将﹣12、﹣34、﹣56、﹣78分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮助同学们完成了部分填空,则图中a+b的值为(  )A.﹣6或﹣3 B.﹣81 C.﹣1或﹣4 D1或﹣12.(2021·湖北省初一期把夏禹时代的“洛书”用现代数学符号翻译出来就是一个三阶幻方,其实际数学意义就是它的每行、每列、每条对角线上三个数之和均相等,则幻方中a的值是    A6 B12 C18 D24【题型 有理数加法的应用(含绝对值)【解题技巧】【典题12021•海陵区期中)已知整数ab满足|a|+|b1|1,则满足条件的a+b的值有多少个(  )A1 B2 C3        D4【典题22022·浙江台州·七年级期末)现有30个数,其中所有正数之和为10,负数之和为,这30个数的绝对值之和为(       A B C D【变式练习】1.2021•红桥区期中)已知|a|2|b|3,且|a+b||a|+|b|,则a+b的值为(  )A5 B.±5 C1 D.±12.(2021·北京丰台·七年级期末)对于有理数abcd,给出如下定义:如果|ac||bc|d.那么称ab关于c的相对距离为d,如果m3关于1的相对距离为5,那么m的值为_____         1.(2022·河南信阳·七年级期末)中国人最先使用负数,魏晋时期的数学家刘徽在正负术的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数,根据刘徽的这种表示法,观察可推算出图中所得的数值为1,则图中所得的数值为(          A7 B-1 C1 D±12.(2022·河北唐山·七年级期末)如图在数轴上有MN两点,则两点表示的数字之和不可能(       A2 B.-4 C.-3.45 D.-73.2021•汉滨区校级月考)下列说法正确的是(  )A.两个加数之和一定大于每一个加数 B.两数之和一定小于每一个加数 C.两个数之和一定介于这两个数之间 D.以上皆有可能4.(2021·辽宁锦州市·七年级期中)小红解题时,将式子先变成再计算结果,则小红运用了(    ).A.加法的交换律和结合律   B.加法的交换律  C.加法的结合律  D.无法判断5.(2021·广东省初一月考)如果是有理数,则下列各式子成立的是(      A如果,那么 B如果,那么C,则 D,且,则6.(2021·云南文山·七年级期末)若,且异号,则的值为(    A5 B51 C1 D1-17.(2021·陕西西安市·七年级期末)中国快递越来越科技范儿,分拣机器人、大数据AI调度等智能装备系统让分拣效率大大提升.某分拣仓库采用智能分拣系统计划平均每天分拣20万件包裹,但实际每天分拣量与计划相比有出入,超过计划量记为正,未达计划量记为负,下面是该仓库10月份第一周分拣包裹的情况(单位:万件):+5,﹣1,﹣3+6,﹣1+4,﹣8,该仓库本周实际分拣包裹一共是(    A138万件 B140万件 C141万件 D142万件8.(2021·河西区·天津实验中学七年级期末)如图,有理数abcd在数轴上的对应点分别是ABCD,若,则    A.大于5 B.小于5 C.等于5 D.不能确定9.(2021·福建师范大学附属中学初中部七年级期中)如图,将9个数填入幻方的九个格中,使处于同一横行、同一竖列、同一斜对角线上的三个数的和相等.则其中x+y的值为(  )A﹣3 B﹣1 C2 D510.(2021·福建·文博中学七年级期中)已知abc为有理数,且abc0b≥﹣c|a|,则abc0的大小关系是(       Aa0b0c0  Ba0b0c0  Ca≥0b0c0  Da≤0b0c011.(2022·江苏扬州·七年级期末)我市一月某天早上气温为-3℃,中午上升了8℃,这天中午的温度是____℃12.(2022·湖南·凤凰县教育科学研究所七年级期末)用[]表示不大于的整数中最大整数,如[2.4]=2[-3.1]= -4,请计算[-5.2]+[4.8]=__________13.(2021·北京怀柔区·七年级期末)下列是运用有理数加法法则计算-5+2思考、计算过程的叙述:-52的绝对值分别为522的绝对值2较小;-5的绝对值5较大;-5+2是异号两数相加;结果的绝对值是用5-2得到;计算结果为-3结果的符号是取-5的符号——负号.请按运用法则思考、计算过程的先后顺序排序(只写序号):______________________14.(2021·贵州贵阳市·七年级期末)如图,小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是______15.(2022·北京市陈经纶中学分校七年级期中)小李在五张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加,重复这样做,每次所得的和都是6789中的一个数,并且这四个数都能取到.猜猜看,小李在五张纸片上各写了什么数.满足条件的五个数有___________组,请写出一组满足条件的数____16.(2022·北京西城·七年级期末)在如图所示的星形图案中,十个圆圈中的数字分别是123456891012,并且每条直线上的四个数字之和都相等.请将图中的数字补全______17.(2022·北京四中七年级期中)小云计划户外徒步锻炼,每天有低强度”“高强度”“休息三种方案,下表对应了每天不同方案的徒步距离(单位:km).若选择高强度要求前一天必须休息(第一天可选择高强度).则小云5天户外徒步锻炼的最远距离为_______km日期12345低强度86654高强度12131528休息0000018.(2021·重庆南岸区·七年级期末)如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1356.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按甲、乙、丙、丁的先后顺序购票,那么甲购买1号座位的票,乙购买246号座位的票,丙购买357911号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________19.(2021·山东·峄城区吴林街道中学七年级阶段练习)用适当方法计算:1; (2   3           4   20.(2021·全国·七年级课时练习)计算:1       2   21.(2021·全国·七年级课时练习)计算:1          2   34      22.(2022·广西梧州·七年级期末)中国部分朝代历经的大约时间如图所示.(1)从秦朝开始至清朝的这些朝代中,不超过一百年的朝代有哪几个?(2)如果把西汉、东汉合为汉朝,西晋、东晋合为晋朝,北宋、南宋合为宋朝,则汉朝,晋朝,宋朝各是多少年?23.(2022·北京昌平·七年级期末)在数学活动课上,王老师介绍说有人建议向火星发射如图1的图案.它叫幻方,幻方最早源于我国,古人称之为纵横图.其中9个格中的点数分别是123456789.每一横行、每一竖列以及两条对角线上的点数的和都相等.如果火星上有智能生物,那么他们可以从这种数学语言了解到地球上也有智能生物(人).1)将-10-8-6-4-202469个数分别填入图2的幻方的空格中,使得每一横行、每一竖列以及两条对角线上的数的和都相等.则这个和是______,并请同学们补全其余的空格.2)在图3的幻方中,每一横行、每一竖列以及两条对角线上的数的和都相等.根据所给信息求出x的值,并根据x的值补全图4的幻方的空格.24.(2022·重庆潼南·七年级期末)阅读材料,探究规律,完成下列问题.甲同学说:我定义了一种新的运算,叫*(加乘)运算.然后他写出了一些按照*(加乘)运算的运算法则进行运算的算式:.乙同学看了这些算式后说:我知道你定义的*(加乘)运算的运算法则了.聪明的你也明白了吗?(1)请你根据甲同学定义的*(加乘)运算的运算法则,计算下列式子:__________________请你尝试归纳甲同学定义的*(加乘)运算的运算法则:两数进行*(加乘)运算时,__________________________________特别地,0和任何数进行*(加乘)运算, ________________________(2)我们知道有理数的加法满足交换律和结合律,这两种运算律在甲同学定义的*(加乘)运算中还适用吗?请你任选一个运算律,判断它在*(加乘)运算中是否适用,并举例验证.(举一个例子即可) 
     

    相关试卷

    专题12 有理数的除法-2022年小升初数学无忧衔接(通用版):

    这是一份专题12 有理数的除法-2022年小升初数学无忧衔接(通用版),文件包含专题12有理数的除法解析版docx、专题12有理数的除法原卷版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。

    专题08 绝对值-2022年小升初数学无忧衔接(通用版):

    这是一份专题08 绝对值-2022年小升初数学无忧衔接(通用版),文件包含专题08绝对值解析版docx、专题08绝对值原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    专题07 相反数-2022年小升初数学无忧衔接(通用版):

    这是一份专题07 相反数-2022年小升初数学无忧衔接(通用版),文件包含专题07相反数解析版docx、专题07相反数原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    数学口算宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map